ExponentialDecay
classkeras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps,
decay_rate,
staircase=False,
name="ExponentialDecay",
)
A LearningRateSchedule
that uses an exponential decay schedule.
When training a model, it is often useful to lower the learning rate as the training progresses. This schedule applies an exponential decay function to an optimizer step, given a provided initial learning rate.
The schedule is a 1-arg callable that produces a decayed learning rate when passed the current optimizer step. This can be useful for changing the learning rate value across different invocations of optimizer functions. It is computed as:
def decayed_learning_rate(step):
return initial_learning_rate * decay_rate ^ (step / decay_steps)
If the argument staircase
is True
, then step / decay_steps
is
an integer division and the decayed learning rate follows a
staircase function.
You can pass this schedule directly into a keras.optimizers.Optimizer
as the learning rate.
Example
When fitting a Keras model, decay every 100000 steps with a base
of 0.96:
initial_learning_rate = 0.1
lr_schedule = keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=100000,
decay_rate=0.96,
staircase=True)
model.compile(optimizer=keras.optimizers.SGD(learning_rate=lr_schedule),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(data, labels, epochs=5)
The learning rate schedule is also serializable and deserializable using
keras.optimizers.schedules.serialize
and
keras.optimizers.schedules.deserialize
.
Arguments
True
decay the learning rate at discrete
intervals."ExponentialDecay
".Returns
A 1-arg callable learning rate schedule that takes the current optimizer
step and outputs the decayed learning rate, a scalar tensor of the
same type as initial_learning_rate
.