Keras 3 API documentation / Optimizers

Optimizers

Available optimizers


Usage with compile() & fit()

An optimizer is one of the two arguments required for compiling a Keras model:

import keras
from keras import layers

model = keras.Sequential()
model.add(layers.Dense(64, kernel_initializer='uniform', input_shape=(10,)))
model.add(layers.Activation('softmax'))

opt = keras.optimizers.Adam(learning_rate=0.01)
model.compile(loss='categorical_crossentropy', optimizer=opt)

You can either instantiate an optimizer before passing it to model.compile() , as in the above example, or you can pass it by its string identifier. In the latter case, the default parameters for the optimizer will be used.

# pass optimizer by name: default parameters will be used
model.compile(loss='categorical_crossentropy', optimizer='adam')

Learning rate decay / scheduling

You can use a learning rate schedule to modulate how the learning rate of your optimizer changes over time:

lr_schedule = keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate=1e-2,
    decay_steps=10000,
    decay_rate=0.9)
optimizer = keras.optimizers.SGD(learning_rate=lr_schedule)

Check out the learning rate schedule API documentation for a list of available schedules.


Base Optimizer API

These methods and attributes are common to all Keras optimizers.

[source]

Optimizer class

keras.optimizers.Optimizer()

Abstract optimizer base class.

If you intend to create your own optimization algorithm, please inherit from this class and override the following methods:

  • build: Create your optimizer-related variables, such as momentum variables in the SGD optimizer.
  • update_step: Implement your optimizer's variable updating logic.
  • get_config: serialization of the optimizer.

Example

class SGD(Optimizer):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.momentum = 0.9

    def build(self, variables):
        super().build(variables)
        self.momentums = []
        for variable in variables:
            self.momentums.append(
                self.add_variable_from_reference(
                    reference_variable=variable, name="momentum"
                )
            )

    def update_step(self, gradient, variable, learning_rate):
        learning_rate = ops.cast(learning_rate, variable.dtype)
        gradient = ops.cast(gradient, variable.dtype)
        m = self.momentums[self._get_variable_index(variable)]
        self.assign(
            m,
            ops.subtract(
                ops.multiply(m, ops.cast(self.momentum, variable.dtype)),
                ops.multiply(gradient, learning_rate),
            ),
        )
        self.assign_add(variable, m)

    def get_config(self):
        config = super().get_config()
        config.update(
            {
                "momentum": self.momentum,
                "nesterov": self.nesterov,
            }
        )
        return config

[source]

apply_gradients method

Optimizer.apply_gradients(grads_and_vars)

variables property

keras.optimizers.Optimizer.variables