About Keras
Getting started
Developer guides
Keras 3 API documentation
Models API
Layers API
Callbacks API
Ops API
Optimizers
Metrics
Losses
Data loading
Built-in small datasets
Keras Applications
Mixed precision
Multi-device distribution
RNG API
Utilities
KerasTuner
KerasCV
KerasNLP
KerasHub
Keras 2 API documentation
Code examples
KerasTuner: Hyperparameter Tuning
KerasHub: Pretrained Models
KerasCV: Computer Vision Workflows
KerasNLP: Natural Language Workflows
search
►
Keras 3 API documentation
Keras 3 API documentation
Models API
The Model class
The Sequential class
Model training APIs
Saving & serialization
Layers API
The base Layer class
Layer activations
Layer weight initializers
Layer weight regularizers
Layer weight constraints
Core layers
Convolution layers
Pooling layers
Recurrent layers
Preprocessing layers
Normalization layers
Regularization layers
Attention layers
Reshaping layers
Merging layers
Activation layers
Backend-specific layers
Callbacks API
Base Callback class
ModelCheckpoint
BackupAndRestore
TensorBoard
EarlyStopping
LearningRateScheduler
ReduceLROnPlateau
RemoteMonitor
LambdaCallback
TerminateOnNaN
CSVLogger
ProgbarLogger
SwapEMAWeights
Ops API
NumPy ops
NN ops
Linear algebra ops
Core ops
Image ops
FFT ops
Optimizers
SGD
RMSprop
Adam
AdamW
Adadelta
Adagrad
Adamax
Adafactor
Nadam
Ftrl
Lion
Lamb
Loss Scale Optimizer
Metrics
Base Metric class
Accuracy metrics
Probabilistic metrics
Regression metrics
Classification metrics based on True/False positives & negatives
Image segmentation metrics
Hinge metrics for "maximum-margin" classification
Metric wrappers and reduction metrics
Losses
Probabilistic losses
Regression losses
Hinge losses for "maximum-margin" classification
Data loading
Image data loading
Timeseries data loading
Text data loading
Audio data loading
Built-in small datasets
MNIST digits classification dataset
CIFAR10 small images classification dataset
CIFAR100 small images classification dataset
IMDB movie review sentiment classification dataset
Reuters newswire classification dataset
Fashion MNIST dataset, an alternative to MNIST
California Housing price regression dataset
Keras Applications
Xception
EfficientNet B0 to B7
EfficientNetV2 B0 to B3 and S, M, L
ConvNeXt Tiny, Small, Base, Large, XLarge
VGG16 and VGG19
ResNet and ResNetV2
MobileNet, MobileNetV2, and MobileNetV3
DenseNet
NasNetLarge and NasNetMobile
InceptionV3
InceptionResNetV2
Mixed precision
Mixed precision policy API
Multi-device distribution
LayoutMap API
DataParallel API
ModelParallel API
ModelParallel API
Distribution utilities
RNG API
SeedGenerator class
Random operations
Utilities
Experiment management utilities
Model plotting utilities
Structured data preprocessing utilities
Tensor utilities
Python & NumPy utilities
Keras configuration utilities
KerasTuner
HyperParameters
Tuners
Oracles
HyperModels
Errors
KerasCV
Layers
Models
Bounding box formats and utilities
Losses
KerasNLP
Pretrained Models
Models API
Tokenizers
Preprocessing Layers
Modeling Layers
Samplers
Metrics
KerasHub
Pretrained Models
Models API
Tokenizers
Preprocessing Layers
Modeling Layers
Samplers
Metrics
Keras 3 API documentation
Models API
Layers API
Callbacks API
Ops API
Optimizers
Metrics
Losses
Data loading
Built-in small datasets
Keras Applications
Mixed precision
Multi-device distribution
RNG API
Utilities
KerasTuner
KerasCV
KerasNLP
KerasHub