DenseNet

[source]

DenseNet121 function

keras.applications.DenseNet121(
    include_top=True,
    weights="imagenet",
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
    name="densenet121",
)

Instantiates the Densenet121 architecture.

Reference

Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at ~/.keras/keras.json.

Note: each Keras Application expects a specific kind of input preprocessing. For DenseNet, call keras.applications.densenet.preprocess_input on your inputs before passing them to the model.

Arguments

  • include_top: whether to include the fully-connected layer at the top of the network.
  • weights: one of None (random initialization), "imagenet" (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of layers.Input()) to use as image input for the model.
  • input_shape: optional shape tuple, only to be specified if include_top is False (otherwise the input shape has to be (224, 224, 3) (with 'channels_last' data format) or (3, 224, 224) (with 'channels_first' data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. (200, 200, 3) would be one valid value.
  • pooling: Optional pooling mode for feature extraction when include_top is False.
    • None means that the output of the model will be the 4D tensor output of the last convolutional block.
    • avg means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor.
    • max means that global max pooling will be applied.
  • classes: optional number of classes to classify images into, only to be specified if include_top is True, and if no weights argument is specified. Defaults to 1000.
  • classifier_activation: A str or callable. The activation function to use on the "top" layer. Ignored unless include_top=True. Set classifier_activation=None to return the logits of the "top" layer. When loading pretrained weights, classifier_activation can only be None or "softmax".
  • name: The name of the model (string).

Returns

A Keras model instance.


[source]

DenseNet169 function

keras.applications.DenseNet169(
    include_top=True,
    weights="imagenet",
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
    name="densenet169",
)

Instantiates the Densenet169 architecture.

Reference

Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at ~/.keras/keras.json.

Note: each Keras Application expects a specific kind of input preprocessing. For DenseNet, call keras.applications.densenet.preprocess_input on your inputs before passing them to the model.

Arguments

  • include_top: whether to include the fully-connected layer at the top of the network.
  • weights: one of None (random initialization), "imagenet" (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of layers.Input()) to use as image input for the model.
  • input_shape: optional shape tuple, only to be specified if include_top is False (otherwise the input shape has to be (224, 224, 3) (with 'channels_last' data format) or (3, 224, 224) (with 'channels_first' data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. (200, 200, 3) would be one valid value.
  • pooling: Optional pooling mode for feature extraction when include_top is False.
    • None means that the output of the model will be the 4D tensor output of the last convolutional block.
    • avg means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor.
    • max means that global max pooling will be applied.
  • classes: optional number of classes to classify images into, only to be specified if include_top is True, and if no weights argument is specified. Defaults to 1000.
  • classifier_activation: A str or callable. The activation function to use on the "top" layer. Ignored unless include_top=True. Set classifier_activation=None to return the logits of the "top" layer. When loading pretrained weights, classifier_activation can only be None or "softmax".
  • name: The name of the model (string).

Returns

A Keras model instance.


[source]

DenseNet201 function

keras.applications.DenseNet201(
    include_top=True,
    weights="imagenet",
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
    name="densenet201",
)

Instantiates the Densenet201 architecture.

Reference

Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at ~/.keras/keras.json.

Note: each Keras Application expects a specific kind of input preprocessing. For DenseNet, call keras.applications.densenet.preprocess_input on your inputs before passing them to the model.

Arguments

  • include_top: whether to include the fully-connected layer at the top of the network.
  • weights: one of None (random initialization), "imagenet" (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of layers.Input()) to use as image input for the model.
  • input_shape: optional shape tuple, only to be specified if include_top is False (otherwise the input shape has to be (224, 224, 3) (with 'channels_last' data format) or (3, 224, 224) (with 'channels_first' data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. (200, 200, 3) would be one valid value.
  • pooling: Optional pooling mode for feature extraction when include_top is False.
    • None means that the output of the model will be the 4D tensor output of the last convolutional block.
    • avg means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor.
    • max means that global max pooling will be applied.
  • classes: optional number of classes to classify images into, only to be specified if include_top is True, and if no weights argument is specified. Defaults to 1000.
  • classifier_activation: A str or callable. The activation function to use on the "top" layer. Ignored unless include_top=True. Set classifier_activation=None to return the logits of the "top" layer. When loading pretrained weights, classifier_activation can only be None or "softmax".
  • name: The name of the model (string).

Returns

A Keras model instance.