XLNetBackbone
classkeras_hub.models.XLNetBackbone(
vocabulary_size,
num_layers,
num_heads,
hidden_dim,
intermediate_dim,
dropout=0.0,
activation="gelu",
kernel_initializer_range=0.02,
bias_initializer="zeros",
dtype=None,
**kwargs
)
XLNet encoder network.
This class implements a XLNet Transformer.
The default constructor gives a fully customizable, randomly initialized
XLNet encoder with any number of layers, heads, and embedding dimensions.
To load preset architectures and weights, use the from_preset
constructor.
Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind.
Attributes
keras.layers.TwoStreamRelativeAttention
layer.keras.layers.TwoStreamRelativeAttention
and feedforward network.keras.activations
, defaults to "gelu". the
activation function of feedforward network.keras.initializers
initializer,
defaults to "zeros". The bias initializer for
the dense and multiheaded relative attention layers.keras.mixed_precision.DTypePolicy
. The dtype to use
for model computations and weights. Note that some computations,
such as softmax and layer normalization, will always be done at
float32 precision regardless of dtype.Call arguments
[batch_size, sequence_length]
.[batch_size, sequence_length]
.[batch_size, sequence_length]
.Example
import numpy as np
from keras_hub.src.models import XLNetBackbone
input_data = {
"token_ids": np.array(
[460, 5272, 1758, 4905, 9, 4, 3], shape=(1, 7),
),
"segment_ids": np.array(
[0, 0, 0, 0, 0, 0, 2], shape=(1, 7),
),
"padding_mask": np.array(
[1, 1, 1, 1, 1, 1, 1], shape=(1, 7)
),
}
# Randomly initialized XLNet encoder with a custom config
model = keras_hub.models.XLNetBackbone(
vocabulary_size=32000,
num_layers=12,
num_heads=12,
hidden_dim=768,
intermediate_dim=3072,
)
output = model(input_data)
from_preset
methodXLNetBackbone.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_hub.models.Backbone
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as a
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Backbone.from_preset()
, or from
a model class like keras_hub.models.GemmaBackbone.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
For any Backbone
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
Arguments
True
, the weights will be loaded into the
model architecture. If False
, the weights will be randomly
initialized.Examples
# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
"gemma_2b_en",
)
# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
"bert_base_en",
load_weights=False,
)
token_embedding
propertykeras_hub.models.XLNetBackbone.token_embedding
A keras.layers.Embedding
instance for embedding token ids.
This layer embeds integer token ids to the hidden dim of the model.