SigLIPTokenizer
classkeras_hub.tokenizers.SigLIPTokenizer(proto, **kwargs)
SigLIP tokenizer layer based on SentencePiece.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_hub.tokenizers.SentencePieceTokenizer
. Unlike the
underlying tokenizer, it will check for all special tokens needed by
SigLIP models and provides a from_preset()
method to automatically
download a matching vocabulary for a SigLIP preset.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor
where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor
with static shape [None]
.
Arguments
string
path to a SentencePiece proto file, or a
bytes
object with a serialized SentencePiece proto. See the
SentencePiece repository
for more details on the format.Examples
# Unbatched input.
tokenizer = keras_hub.models.SigLIPTokenizer.from_preset(
"siglip_base_patch16_224"
)
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=8,
model_type="WORD",
pad_id=0,
bos_id=1,
eos_id=2,
unk_id=3,
unk_piece="<unk>",
)
tokenizer = keras_hub.models.SigLIPTokenizer(
proto=bytes_io.getvalue(),
)
tokenizer("The quick brown fox jumped.")
from_preset
methodSigLIPTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Tokenizer
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset()
, or from
a model class like keras_hub.models.GemmaTokenizer.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, the weights will be loaded into the
model architecture. If False
, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
Preset | Parameters | Description |
---|---|---|
siglip_base_patch16_224 | 203.16M | 200 million parameter, image size 224, pre-trained on WebLi. |
siglip_base_patch16_256 | 203.20M | 200 million parameter, image size 256, pre-trained on WebLi. |
siglip_base_patch16_384 | 203.45M | 200 million parameter, image size 384, pre-trained on WebLi. |
siglip_base_patch16_512 | 203.79M | 200 million parameter, image size 512, pre-trained on WebLi. |
siglip_base_patch16_256_multilingual | 370.63M | 370 million parameter, image size 256, pre-trained on WebLi. |
siglip2_base_patch16_224 | 375.19M | 375 million parameter, patch size 16, image size 224, pre-trained on WebLi. |
siglip2_base_patch16_256 | 375.23M | 375 million parameter, patch size 16, image size 256, pre-trained on WebLi. |
siglip2_base_patch32_256 | 376.86M | 376 million parameter, patch size 32, image size 256, pre-trained on WebLi. |
siglip2_base_patch16_384 | 376.86M | 376 million parameter, patch size 16, image size 384, pre-trained on WebLi. |
siglip_large_patch16_256 | 652.15M | 652 million parameter, image size 256, pre-trained on WebLi. |
siglip_large_patch16_384 | 652.48M | 652 million parameter, image size 384, pre-trained on WebLi. |
siglip_so400m_patch14_224 | 877.36M | 877 million parameter, image size 224, shape-optimized version, pre-trained on WebLi. |
siglip_so400m_patch14_384 | 877.96M | 877 million parameter, image size 384, shape-optimized version, pre-trained on WebLi. |
siglip2_large_patch16_256 | 881.53M | 881 million parameter, patch size 16, image size 256, pre-trained on WebLi. |
siglip2_large_patch16_384 | 881.86M | 881 million parameter, patch size 16, image size 384, pre-trained on WebLi. |
siglip2_large_patch16_512 | 882.31M | 882 million parameter, patch size 16, image size 512, pre-trained on WebLi. |
siglip_so400m_patch16_256_i18n | 1.13B | 1.1 billion parameter, image size 256, shape-optimized version, pre-trained on WebLi. |
siglip2_so400m_patch14_224 | 1.14B | 1.1 billion parameter, patch size 14, image size 224, shape-optimized version, pre-trained on WebLi. |
siglip2_so400m_patch16_256 | 1.14B | 1.1 billion parameter, patch size 16, image size 256, shape-optimized version, pre-trained on WebLi. |
siglip2_so400m_patch14_384 | 1.14B | 1.1 billion parameter, patch size 14, image size 224, shape-optimized version, pre-trained on WebLi. |
siglip2_so400m_patch16_384 | 1.14B | 1.1 billion parameter, patch size 16, image size 384, shape-optimized version, pre-trained on WebLi. |
siglip2_so400m_patch16_512 | 1.14B | 1.1 billion parameter, patch size 16, image size 512, shape-optimized version, pre-trained on WebLi. |
siglip2_giant_opt_patch16_256 | 1.87B | 1.8 billion parameter, patch size 16, image size 256, pre-trained on WebLi. |
siglip2_giant_opt_patch16_384 | 1.87B | 1.8 billion parameter, patch size 16, image size 384, pre-trained on WebLi. |