Author: David Griffiths
Date created: 2020/05/25
Last modified: 2024/01/09
Description: Implementation of PointNet for ModelNet10 classification.
View in Colab β’ GitHub source
Classification, detection and segmentation of unordered 3D point sets i.e. point clouds is a core problem in computer vision. This example implements the seminal point cloud deep learning paper PointNet (Qi et al., 2017). For a detailed intoduction on PointNet see this blog post.
If using colab first install trimesh with !pip install trimesh
.
import os
import glob
import trimesh
import numpy as np
from tensorflow import data as tf_data
from keras import ops
import keras
from keras import layers
from matplotlib import pyplot as plt
keras.utils.set_random_seed(seed=42)
We use the ModelNet10 model dataset, the smaller 10 class version of the ModelNet40 dataset. First download the data:
DATA_DIR = keras.utils.get_file(
"modelnet.zip",
"http://3dvision.princeton.edu/projects/2014/3DShapeNets/ModelNet10.zip",
extract=True,
)
DATA_DIR = os.path.join(os.path.dirname(DATA_DIR), "ModelNet10")
Downloading data from http://3dvision.princeton.edu/projects/2014/3DShapeNets/ModelNet10.zip
0/473402300 [37mββββββββββββββββββββ 0s 0s/step
8192/473402300 [37mββββββββββββββββββββ 1:06:44 8us/step
40960/473402300 [37mββββββββββββββββββββ 26:17 3us/step
90112/473402300 [37mββββββββββββββββββββ 17:49 2us/step
188416/473402300 [37mββββββββββββββββββββ 11:20 1us/step
385024/473402300 [37mββββββββββββββββββββ 6:55 1us/step
786432/473402300 [37mββββββββββββββββββββ 4:03 1us/step
1581056/473402300 [37mββββββββββββββββββββ 2:21 0us/step
3170304/473402300 [37mββββββββββββββββββββ 1:20 0us/step
6004736/473402300 [37mββββββββββββββββββββ 47s 0us/step
8880128/473402300 [37mββββββββββββββββββββ 35s 0us/step
11902976/473402300 [37mββββββββββββββββββββ 28s 0us/step
14925824/473402300 [37mββββββββββββββββββββ 24s 0us/step
17915904/473402300 [37mββββββββββββββββββββ 22s 0us/step
21020672/473402300 [37mββββββββββββββββββββ 20s 0us/step
23977984/473402300 β[37mβββββββββββββββββββ 18s 0us/step
26861568/473402300 β[37mβββββββββββββββββββ 17s 0us/step
29958144/473402300 β[37mβββββββββββββββββββ 16s 0us/step
33071104/473402300 β[37mβββββββββββββββββββ 16s 0us/step
36175872/473402300 β[37mβββββββββββββββββββ 15s 0us/step
39206912/473402300 β[37mβββββββββββββββββββ 14s 0us/step
41902080/473402300 β[37mβββββββββββββββββββ 14s 0us/step
45015040/473402300 β[37mβββββββββββββββββββ 14s 0us/step
48021504/473402300 ββ[37mββββββββββββββββββ 13s 0us/step
51003392/473402300 ββ[37mββββββββββββββββββ 13s 0us/step
53960704/473402300 ββ[37mββββββββββββββββββ 13s 0us/step
56803328/473402300 ββ[37mββββββββββββββββββ 12s 0us/step
59834368/473402300 ββ[37mββββββββββββββββββ 12s 0us/step
62750720/473402300 ββ[37mββββββββββββββββββ 12s 0us/step
65839104/473402300 ββ[37mββββββββββββββββββ 12s 0us/step
68698112/473402300 ββ[37mββββββββββββββββββ 11s 0us/step
71385088/473402300 βββ[37mβββββββββββββββββ 11s 0us/step
74432512/473402300 βββ[37mβββββββββββββββββ 11s 0us/step
77365248/473402300 βββ[37mβββββββββββββββββ 11s 0us/step
80363520/473402300 βββ[37mβββββββββββββββββ 11s 0us/step
83156992/473402300 βββ[37mβββββββββββββββββ 11s 0us/step
86179840/473402300 βββ[37mβββββββββββββββββ 10s 0us/step
89300992/473402300 βββ[37mβββββββββββββββββ 10s 0us/step
92282880/473402300 βββ[37mβββββββββββββββββ 10s 0us/step
95371264/473402300 ββββ[37mββββββββββββββββ 10s 0us/step
98410496/473402300 ββββ[37mββββββββββββββββ 10s 0us/step
101130240/473402300 ββββ[37mββββββββββββββββ 10s 0us/step
104169472/473402300 ββββ[37mββββββββββββββββ 10s 0us/step
107192320/473402300 ββββ[37mββββββββββββββββ 9s 0us/step
110297088/473402300 ββββ[37mββββββββββββββββ 9s 0us/step
113344512/473402300 ββββ[37mββββββββββββββββ 9s 0us/step
116391936/473402300 ββββ[37mββββββββββββββββ 9s 0us/step
119513088/473402300 βββββ[37mβββββββββββββββ 9s 0us/step
122626048/473402300 βββββ[37mβββββββββββββββ 9s 0us/step
125313024/473402300 βββββ[37mβββββββββββββββ 9s 0us/step
128368640/473402300 βββββ[37mβββββββββββββββ 9s 0us/step
131432448/473402300 βββββ[37mβββββββββββββββ 8s 0us/step
134520832/473402300 βββββ[37mβββββββββββββββ 8s 0us/step
137560064/473402300 βββββ[37mβββββββββββββββ 8s 0us/step
140648448/473402300 βββββ[37mβββββββββββββββ 8s 0us/step
143720448/473402300 ββββββ[37mββββββββββββββ 8s 0us/step
146808832/473402300 ββββββ[37mββββββββββββββ 8s 0us/step
149864448/473402300 ββββββ[37mββββββββββββββ 8s 0us/step
152592384/473402300 ββββββ[37mββββββββββββββ 8s 0us/step
155623424/473402300 ββββββ[37mββββββββββββββ 8s 0us/step
158728192/473402300 ββββββ[37mββββββββββββββ 8s 0us/step
161783808/473402300 ββββββ[37mββββββββββββββ 7s 0us/step
164806656/473402300 ββββββ[37mββββββββββββββ 7s 0us/step
167895040/473402300 βββββββ[37mβββββββββββββ 7s 0us/step
170975232/473402300 βββββββ[37mβββββββββββββ 7s 0us/step
174071808/473402300 βββββββ[37mβββββββββββββ 7s 0us/step
177119232/473402300 βββββββ[37mβββββββββββββ 7s 0us/step
180166656/473402300 βββββββ[37mβββββββββββββ 7s 0us/step
182976512/473402300 βββββββ[37mβββββββββββββ 7s 0us/step
185884672/473402300 βββββββ[37mβββββββββββββ 7s 0us/step
188932096/473402300 βββββββ[37mβββββββββββββ 7s 0us/step
192028672/473402300 ββββββββ[37mββββββββββββ 7s 0us/step
195117056/473402300 ββββββββ[37mββββββββββββ 6s 0us/step
198189056/473402300 ββββββββ[37mββββββββββββ 6s 0us/step
201302016/473402300 ββββββββ[37mββββββββββββ 6s 0us/step
204406784/473402300 ββββββββ[37mββββββββββββ 6s 0us/step
207470592/473402300 ββββββββ[37mββββββββββββ 6s 0us/step
210575360/473402300 ββββββββ[37mββββββββββββ 6s 0us/step
213581824/473402300 βββββββββ[37mβββββββββββ 6s 0us/step
216268800/473402300 βββββββββ[37mβββββββββββ 6s 0us/step
218374144/473402300 βββββββββ[37mβββββββββββ 6s 0us/step
220569600/473402300 βββββββββ[37mβββββββββββ 6s 0us/step
222363648/473402300 βββββββββ[37mβββββββββββ 6s 0us/step
225345536/473402300 βββββββββ[37mβββββββββββ 6s 0us/step
228425728/473402300 βββββββββ[37mβββββββββββ 6s 0us/step
231473152/473402300 βββββββββ[37mβββββββββββ 5s 0us/step
234577920/473402300 βββββββββ[37mβββββββββββ 5s 0us/step
237690880/473402300 ββββββββββ[37mββββββββββ 5s 0us/step
240746496/473402300 ββββββββββ[37mββββββββββ 5s 0us/step
243834880/473402300 ββββββββββ[37mββββββββββ 5s 0us/step
246898688/473402300 ββββββββββ[37mββββββββββ 5s 0us/step
249954304/473402300 ββββββββββ[37mββββββββββ 5s 0us/step
252936192/473402300 ββββββββββ[37mββββββββββ 5s 0us/step
255672320/473402300 ββββββββββ[37mββββββββββ 5s 0us/step
258695168/473402300 ββββββββββ[37mββββββββββ 5s 0us/step
261734400/473402300 βββββββββββ[37mβββββββββ 5s 0us/step
264847360/473402300 βββββββββββ[37mβββββββββ 5s 0us/step
267919360/473402300 βββββββββββ[37mβββββββββ 4s 0us/step
271015936/473402300 βββββββββββ[37mβββββββββ 4s 0us/step
273768448/473402300 βββββββββββ[37mβββββββββ 4s 0us/step
276840448/473402300 βββββββββββ[37mβββββββββ 4s 0us/step
279625728/473402300 βββββββββββ[37mβββββββββ 4s 0us/step
282525696/473402300 βββββββββββ[37mβββββββββ 4s 0us/step
285581312/473402300 ββββββββββββ[37mββββββββ 4s 0us/step
288645120/473402300 ββββββββββββ[37mββββββββ 4s 0us/step
291733504/473402300 ββββββββββββ[37mββββββββ 4s 0us/step
294682624/473402300 ββββββββββββ[37mββββββββ 4s 0us/step
297795584/473402300 ββββββββββββ[37mββββββββ 4s 0us/step
300851200/473402300 ββββββββββββ[37mββββββββ 4s 0us/step
303955968/473402300 ββββββββββββ[37mββββββββ 4s 0us/step
306798592/473402300 ββββββββββββ[37mββββββββ 3s 0us/step
309846016/473402300 βββββββββββββ[37mβββββββ 3s 0us/step
312926208/473402300 βββββββββββββ[37mβββββββ 3s 0us/step
315990016/473402300 βββββββββββββ[37mβββββββ 3s 0us/step
319053824/473402300 βββββββββββββ[37mβββββββ 3s 0us/step
322134016/473402300 βββββββββββββ[37mβββββββ 3s 0us/step
325099520/473402300 βββββββββββββ[37mβββββββ 3s 0us/step
328187904/473402300 βββββββββββββ[37mβββββββ 3s 0us/step
331251712/473402300 βββββββββββββ[37mβββββββ 3s 0us/step
334364672/473402300 ββββββββββββββ[37mββββββ 3s 0us/step
337477632/473402300 ββββββββββββββ[37mββββββ 3s 0us/step
340598784/473402300 ββββββββββββββ[37mββββββ 3s 0us/step
343130112/473402300 ββββββββββββββ[37mββββββ 3s 0us/step
345554944/473402300 ββββββββββββββ[37mββββββ 3s 0us/step
347570176/473402300 ββββββββββββββ[37mββββββ 2s 0us/step
350224384/473402300 ββββββββββββββ[37mββββββ 2s 0us/step
352436224/473402300 ββββββββββββββ[37mββββββ 2s 0us/step
355393536/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
357179392/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
359858176/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
362045440/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364281856/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364298240/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364306432/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364314624/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364322816/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364331008/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364339200/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364347392/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364355584/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364363776/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364371968/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364380160/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364396544/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364445696/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
364601344/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
365084672/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
366510080/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
369491968/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
372400128/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
375521280/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
378535936/473402300 βββββββββββββββ[37mβββββ 2s 0us/step
381558784/473402300 ββββββββββββββββ[37mββββ 2s 0us/step
384475136/473402300 ββββββββββββββββ[37mββββ 2s 0us/step
387571712/473402300 ββββββββββββββββ[37mββββ 2s 0us/step
390463488/473402300 ββββββββββββββββ[37mββββ 2s 0us/step
393551872/473402300 ββββββββββββββββ[37mββββ 2s 0us/step
396632064/473402300 ββββββββββββββββ[37mββββ 2s 0us/step
399704064/473402300 ββββββββββββββββ[37mββββ 1s 0us/step
402767872/473402300 βββββββββββββββββ[37mβββ 1s 0us/step
405790720/473402300 βββββββββββββββββ[37mβββ 1s 0us/step
408854528/473402300 βββββββββββββββββ[37mβββ 1s 0us/step
411975680/473402300 βββββββββββββββββ[37mβββ 1s 0us/step
414982144/473402300 βββββββββββββββββ[37mβββ 1s 0us/step
418045952/473402300 βββββββββββββββββ[37mβββ 1s 0us/step
421167104/473402300 βββββββββββββββββ[37mβββ 1s 0us/step
423878656/473402300 βββββββββββββββββ[37mβββ 1s 0us/step
426999808/473402300 ββββββββββββββββββ[37mββ 1s 0us/step
430112768/473402300 ββββββββββββββββββ[37mββ 1s 0us/step
433053696/473402300 ββββββββββββββββββ[37mββ 1s 0us/step
436125696/473402300 ββββββββββββββββββ[37mββ 0s 0us/step
439189504/473402300 ββββββββββββββββββ[37mββ 0s 0us/step
442286080/473402300 ββββββββββββββββββ[37mββ 0s 0us/step
445063168/473402300 ββββββββββββββββββ[37mββ 0s 0us/step
448118784/473402300 ββββββββββββββββββ[37mββ 0s 0us/step
451166208/473402300 βββββββββββββββββββ[37mβ 0s 0us/step
454262784/473402300 βββββββββββββββββββ[37mβ 0s 0us/step
457293824/473402300 βββββββββββββββββββ[37mβ 0s 0us/step
460275712/473402300 βββββββββββββββββββ[37mβ 0s 0us/step
463011840/473402300 βββββββββββββββββββ[37mβ 0s 0us/step
466018304/473402300 βββββββββββββββββββ[37mβ 0s 0us/step
469057536/473402300 βββββββββββββββββββ[37mβ 0s 0us/step
472145920/473402300 βββββββββββββββββββ[37mβ 0s 0us/step
473402300/473402300 ββββββββββββββββββββ 12s 0us/step
We can use the trimesh
package to read and visualize the .off
mesh files.
mesh = trimesh.load(os.path.join(DATA_DIR, "chair/train/chair_0001.off"))
mesh.show()
To convert a mesh file to a point cloud we first need to sample points on the mesh
surface. .sample()
performs a uniform random sampling. Here we sample at 2048 locations
and visualize in matplotlib
.
points = mesh.sample(2048)
fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(111, projection="3d")
ax.scatter(points[:, 0], points[:, 1], points[:, 2])
ax.set_axis_off()
plt.show()
To generate a tf.data.Dataset()
we need to first parse through the ModelNet data
folders. Each mesh is loaded and sampled into a point cloud before being added to a
standard python list and converted to a numpy
array. We also store the current
enumerate index value as the object label and use a dictionary to recall this later.
def parse_dataset(num_points=2048):
train_points = []
train_labels = []
test_points = []
test_labels = []
class_map = {}
folders = glob.glob(os.path.join(DATA_DIR, "[!README]*"))
for i, folder in enumerate(folders):
print("processing class: {}".format(os.path.basename(folder)))
# store folder name with ID so we can retrieve later
class_map[i] = folder.split("/")[-1]
# gather all files
train_files = glob.glob(os.path.join(folder, "train/*"))
test_files = glob.glob(os.path.join(folder, "test/*"))
for f in train_files:
train_points.append(trimesh.load(f).sample(num_points))
train_labels.append(i)
for f in test_files:
test_points.append(trimesh.load(f).sample(num_points))
test_labels.append(i)
return (
np.array(train_points),
np.array(test_points),
np.array(train_labels),
np.array(test_labels),
class_map,
)
Set the number of points to sample and batch size and parse the dataset. This can take ~5minutes to complete.
NUM_POINTS = 2048
NUM_CLASSES = 10
BATCH_SIZE = 32
train_points, test_points, train_labels, test_labels, CLASS_MAP = parse_dataset(
NUM_POINTS
)
processing class: bathtub
processing class: monitor
processing class: desk
processing class: dresser
processing class: toilet
processing class: bed
processing class: sofa
processing class: chair
processing class: night_stand
processing class: table
Our data can now be read into a tf.data.Dataset()
object. We set the shuffle buffer
size to the entire size of the dataset as prior to this the data is ordered by class.
Data augmentation is important when working with point cloud data. We create a
augmentation function to jitter and shuffle the train dataset.
def augment(points, label):
# jitter points
points += keras.random.uniform(points.shape, -0.005, 0.005, dtype="float64")
# shuffle points
points = keras.random.shuffle(points)
return points, label
train_size = 0.8
dataset = tf_data.Dataset.from_tensor_slices((train_points, train_labels))
test_dataset = tf_data.Dataset.from_tensor_slices((test_points, test_labels))
train_dataset_size = int(len(dataset) * train_size)
dataset = dataset.shuffle(len(train_points)).map(augment)
test_dataset = test_dataset.shuffle(len(test_points)).batch(BATCH_SIZE)
train_dataset = dataset.take(train_dataset_size).batch(BATCH_SIZE)
validation_dataset = dataset.skip(train_dataset_size).batch(BATCH_SIZE)
Each convolution and fully-connected layer (with exception for end layers) consists of Convolution / Dense -> Batch Normalization -> ReLU Activation.
def conv_bn(x, filters):
x = layers.Conv1D(filters, kernel_size=1, padding="valid")(x)
x = layers.BatchNormalization(momentum=0.0)(x)
return layers.Activation("relu")(x)
def dense_bn(x, filters):
x = layers.Dense(filters)(x)
x = layers.BatchNormalization(momentum=0.0)(x)
return layers.Activation("relu")(x)
PointNet consists of two core components. The primary MLP network, and the transformer net (T-net). The T-net aims to learn an affine transformation matrix by its own mini network. The T-net is used twice. The first time to transform the input features (n, 3) into a canonical representation. The second is an affine transformation for alignment in feature space (n, 3). As per the original paper we constrain the transformation to be close to an orthogonal matrix (i.e. ||X*X^T - I|| = 0).
class OrthogonalRegularizer(keras.regularizers.Regularizer):
def __init__(self, num_features, l2reg=0.001):
self.num_features = num_features
self.l2reg = l2reg
self.eye = ops.eye(num_features)
def __call__(self, x):
x = ops.reshape(x, (-1, self.num_features, self.num_features))
xxt = ops.tensordot(x, x, axes=(2, 2))
xxt = ops.reshape(xxt, (-1, self.num_features, self.num_features))
return ops.sum(self.l2reg * ops.square(xxt - self.eye))
We can then define a general function to build T-net layers.
def tnet(inputs, num_features):
# Initialise bias as the identity matrix
bias = keras.initializers.Constant(np.eye(num_features).flatten())
reg = OrthogonalRegularizer(num_features)
x = conv_bn(inputs, 32)
x = conv_bn(x, 64)
x = conv_bn(x, 512)
x = layers.GlobalMaxPooling1D()(x)
x = dense_bn(x, 256)
x = dense_bn(x, 128)
x = layers.Dense(
num_features * num_features,
kernel_initializer="zeros",
bias_initializer=bias,
activity_regularizer=reg,
)(x)
feat_T = layers.Reshape((num_features, num_features))(x)
# Apply affine transformation to input features
return layers.Dot(axes=(2, 1))([inputs, feat_T])
The main network can be then implemented in the same manner where the t-net mini models can be dropped in a layers in the graph. Here we replicate the network architecture published in the original paper but with half the number of weights at each layer as we are using the smaller 10 class ModelNet dataset.
inputs = keras.Input(shape=(NUM_POINTS, 3))
x = tnet(inputs, 3)
x = conv_bn(x, 32)
x = conv_bn(x, 32)
x = tnet(x, 32)
x = conv_bn(x, 32)
x = conv_bn(x, 64)
x = conv_bn(x, 512)
x = layers.GlobalMaxPooling1D()(x)
x = dense_bn(x, 256)
x = layers.Dropout(0.3)(x)
x = dense_bn(x, 128)
x = layers.Dropout(0.3)(x)
outputs = layers.Dense(NUM_CLASSES, activation="softmax")(x)
model = keras.Model(inputs=inputs, outputs=outputs, name="pointnet")
model.summary()
Model: "pointnet"
βββββββββββββββββββββββ³ββββββββββββββββββββ³ββββββββββ³βββββββββββββββββββββββ β Layer (type) β Output Shape β Param # β Connected to β β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ© β input_layer β (None, 2048, 3) β 0 β - β β (InputLayer) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β conv1d (Conv1D) β (None, 2048, 32) β 128 β input_layer[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalization β (None, 2048, 32) β 128 β conv1d[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation β (None, 2048, 32) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β conv1d_1 (Conv1D) β (None, 2048, 64) β 2,112 β activation[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 2048, 64) β 256 β conv1d_1[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_1 β (None, 2048, 64) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β conv1d_2 (Conv1D) β (None, 2048, 512) β 33,280 β activation_1[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 2048, 512) β 2,048 β conv1d_2[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_2 β (None, 2048, 512) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β global_max_poolingβ¦ β (None, 512) β 0 β activation_2[0][0] β β (GlobalMaxPooling1β¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dense (Dense) β (None, 256) β 131,328 β global_max_pooling1β¦ β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 256) β 1,024 β dense[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_3 β (None, 256) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dense_1 (Dense) β (None, 128) β 32,896 β activation_3[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 128) β 512 β dense_1[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_4 β (None, 128) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dense_2 (Dense) β (None, 9) β 1,161 β activation_4[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β reshape (Reshape) β (None, 3, 3) β 0 β dense_2[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dot (Dot) β (None, 2048, 3) β 0 β input_layer[0][0], β β β β β reshape[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β conv1d_3 (Conv1D) β (None, 2048, 32) β 128 β dot[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 2048, 32) β 128 β conv1d_3[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_5 β (None, 2048, 32) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β conv1d_4 (Conv1D) β (None, 2048, 32) β 1,056 β activation_5[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 2048, 32) β 128 β conv1d_4[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_6 β (None, 2048, 32) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β conv1d_5 (Conv1D) β (None, 2048, 32) β 1,056 β activation_6[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 2048, 32) β 128 β conv1d_5[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_7 β (None, 2048, 32) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β conv1d_6 (Conv1D) β (None, 2048, 64) β 2,112 β activation_7[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 2048, 64) β 256 β conv1d_6[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_8 β (None, 2048, 64) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β conv1d_7 (Conv1D) β (None, 2048, 512) β 33,280 β activation_8[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 2048, 512) β 2,048 β conv1d_7[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_9 β (None, 2048, 512) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β global_max_poolingβ¦ β (None, 512) β 0 β activation_9[0][0] β β (GlobalMaxPooling1β¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dense_3 (Dense) β (None, 256) β 131,328 β global_max_pooling1β¦ β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 256) β 1,024 β dense_3[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_10 β (None, 256) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dense_4 (Dense) β (None, 128) β 32,896 β activation_10[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 128) β 512 β dense_4[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_11 β (None, 128) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dense_5 (Dense) β (None, 1024) β 132,096 β activation_11[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β reshape_1 (Reshape) β (None, 32, 32) β 0 β dense_5[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dot_1 (Dot) β (None, 2048, 32) β 0 β activation_6[0][0], β β β β β reshape_1[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β conv1d_8 (Conv1D) β (None, 2048, 32) β 1,056 β dot_1[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 2048, 32) β 128 β conv1d_8[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_12 β (None, 2048, 32) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β conv1d_9 (Conv1D) β (None, 2048, 64) β 2,112 β activation_12[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 2048, 64) β 256 β conv1d_9[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_13 β (None, 2048, 64) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β conv1d_10 (Conv1D) β (None, 2048, 512) β 33,280 β activation_13[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 2048, 512) β 2,048 β conv1d_10[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_14 β (None, 2048, 512) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β global_max_poolingβ¦ β (None, 512) β 0 β activation_14[0][0] β β (GlobalMaxPooling1β¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dense_6 (Dense) β (None, 256) β 131,328 β global_max_pooling1β¦ β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 256) β 1,024 β dense_6[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_15 β (None, 256) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dropout (Dropout) β (None, 256) β 0 β activation_15[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dense_7 (Dense) β (None, 128) β 32,896 β dropout[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β batch_normalizatioβ¦ β (None, 128) β 512 β dense_7[0][0] β β (BatchNormalizatioβ¦ β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β activation_16 β (None, 128) β 0 β batch_normalizationβ¦ β β (Activation) β β β β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dropout_1 (Dropout) β (None, 128) β 0 β activation_16[0][0] β βββββββββββββββββββββββΌββββββββββββββββββββΌββββββββββΌβββββββββββββββββββββββ€ β dense_8 (Dense) β (None, 10) β 1,290 β dropout_1[0][0] β βββββββββββββββββββββββ΄ββββββββββββββββββββ΄ββββββββββ΄βββββββββββββββββββββββ
Total params: 748,979 (2.86 MB)
Trainable params: 742,899 (2.83 MB)
Non-trainable params: 6,080 (23.75 KB)
Once the model is defined it can be trained like any other standard classification model
using .compile()
and .fit()
.
model.compile(
loss="sparse_categorical_crossentropy",
optimizer=keras.optimizers.Adam(learning_rate=0.001),
metrics=["sparse_categorical_accuracy"],
)
model.fit(train_dataset, epochs=20, validation_data=validation_dataset)
Epoch 1/20
1/100 [37mββββββββββββββββββββ 16:59 10s/step - loss: 70.7465 - sparse_categorical_accuracy: 0.2188
2/100 [37mββββββββββββββββββββ 2:06 1s/step - loss: 69.8872 - sparse_categorical_accuracy: 0.1953
3/100 [37mββββββββββββββββββββ 2:00 1s/step - loss: 69.4798 - sparse_categorical_accuracy: 0.1823
4/100 [37mββββββββββββββββββββ 1:57 1s/step - loss: 68.7454 - sparse_categorical_accuracy: 0.1719
5/100 β[37mβββββββββββββββββββ 1:53 1s/step - loss: 67.8508 - sparse_categorical_accuracy: 0.1700
6/100 β[37mβββββββββββββββββββ 1:50 1s/step - loss: 67.0352 - sparse_categorical_accuracy: 0.1703
7/100 β[37mβββββββββββββββββββ 1:47 1s/step - loss: 66.3409 - sparse_categorical_accuracy: 0.1702
8/100 β[37mβββββββββββββββββββ 1:45 1s/step - loss: 65.5973 - sparse_categorical_accuracy: 0.1734
9/100 β[37mβββββββββββββββββββ 1:43 1s/step - loss: 64.8169 - sparse_categorical_accuracy: 0.1761
10/100 ββ[37mββββββββββββββββββ 1:41 1s/step - loss: 64.0699 - sparse_categorical_accuracy: 0.1769
11/100 ββ[37mββββββββββββββββββ 1:39 1s/step - loss: 63.3220 - sparse_categorical_accuracy: 0.1779
12/100 ββ[37mββββββββββββββββββ 1:38 1s/step - loss: 62.6677 - sparse_categorical_accuracy: 0.1776
13/100 ββ[37mββββββββββββββββββ 1:36 1s/step - loss: 62.0234 - sparse_categorical_accuracy: 0.1778
14/100 ββ[37mββββββββββββββββββ 1:35 1s/step - loss: 61.4256 - sparse_categorical_accuracy: 0.1774
15/100 βββ[37mβββββββββββββββββ 1:34 1s/step - loss: 60.8435 - sparse_categorical_accuracy: 0.1772
16/100 βββ[37mβββββββββββββββββ 1:32 1s/step - loss: 60.2982 - sparse_categorical_accuracy: 0.1771
17/100 βββ[37mβββββββββββββββββ 1:31 1s/step - loss: 59.7788 - sparse_categorical_accuracy: 0.1773
18/100 βββ[37mβββββββββββββββββ 1:29 1s/step - loss: 59.2792 - sparse_categorical_accuracy: 0.1777
19/100 βββ[37mβββββββββββββββββ 1:28 1s/step - loss: 58.7959 - sparse_categorical_accuracy: 0.1782
20/100 ββββ[37mββββββββββββββββ 1:27 1s/step - loss: 58.3345 - sparse_categorical_accuracy: 0.1787
21/100 ββββ[37mββββββββββββββββ 1:25 1s/step - loss: 57.8916 - sparse_categorical_accuracy: 0.1794
22/100 ββββ[37mββββββββββββββββ 1:24 1s/step - loss: 57.4650 - sparse_categorical_accuracy: 0.1803
23/100 ββββ[37mββββββββββββββββ 1:23 1s/step - loss: 57.0690 - sparse_categorical_accuracy: 0.1811
24/100 ββββ[37mββββββββββββββββ 1:22 1s/step - loss: 56.6876 - sparse_categorical_accuracy: 0.1819
25/100 βββββ[37mβββββββββββββββ 1:20 1s/step - loss: 56.3285 - sparse_categorical_accuracy: 0.1827
26/100 βββββ[37mβββββββββββββββ 1:19 1s/step - loss: 55.9864 - sparse_categorical_accuracy: 0.1834
27/100 βββββ[37mβββββββββββββββ 1:18 1s/step - loss: 55.6550 - sparse_categorical_accuracy: 0.1843
28/100 βββββ[37mβββββββββββββββ 1:17 1s/step - loss: 55.3351 - sparse_categorical_accuracy: 0.1852
29/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 55.0261 - sparse_categorical_accuracy: 0.1863
30/100 ββββββ[37mββββββββββββββ 1:15 1s/step - loss: 54.7329 - sparse_categorical_accuracy: 0.1872
31/100 ββββββ[37mββββββββββββββ 1:13 1s/step - loss: 54.4503 - sparse_categorical_accuracy: 0.1882
32/100 ββββββ[37mββββββββββββββ 1:12 1s/step - loss: 54.1778 - sparse_categorical_accuracy: 0.1891
33/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 53.9170 - sparse_categorical_accuracy: 0.1900
34/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 53.6651 - sparse_categorical_accuracy: 0.1909
35/100 βββββββ[37mβββββββββββββ 1:09 1s/step - loss: 53.4239 - sparse_categorical_accuracy: 0.1916
36/100 βββββββ[37mβββββββββββββ 1:08 1s/step - loss: 53.1926 - sparse_categorical_accuracy: 0.1922
37/100 βββββββ[37mβββββββββββββ 1:07 1s/step - loss: 52.9695 - sparse_categorical_accuracy: 0.1929
38/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 52.7542 - sparse_categorical_accuracy: 0.1935
39/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 52.5469 - sparse_categorical_accuracy: 0.1940
40/100 ββββββββ[37mββββββββββββ 1:03 1s/step - loss: 52.3461 - sparse_categorical_accuracy: 0.1946
41/100 ββββββββ[37mββββββββββββ 1:02 1s/step - loss: 52.1509 - sparse_categorical_accuracy: 0.1950
42/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 51.9608 - sparse_categorical_accuracy: 0.1955
43/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 51.7759 - sparse_categorical_accuracy: 0.1960
44/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 51.5960 - sparse_categorical_accuracy: 0.1966
45/100 βββββββββ[37mβββββββββββ 58s 1s/step - loss: 51.4224 - sparse_categorical_accuracy: 0.1971
46/100 βββββββββ[37mβββββββββββ 57s 1s/step - loss: 51.2539 - sparse_categorical_accuracy: 0.1976
47/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 51.0897 - sparse_categorical_accuracy: 0.1982
48/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 50.9300 - sparse_categorical_accuracy: 0.1987
49/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 50.7742 - sparse_categorical_accuracy: 0.1992
50/100 ββββββββββ[37mββββββββββ 52s 1s/step - loss: 50.6223 - sparse_categorical_accuracy: 0.1997
51/100 ββββββββββ[37mββββββββββ 51s 1s/step - loss: 50.4747 - sparse_categorical_accuracy: 0.2001
52/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 50.3312 - sparse_categorical_accuracy: 0.2006
53/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 50.1910 - sparse_categorical_accuracy: 0.2011
54/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 50.0539 - sparse_categorical_accuracy: 0.2017
55/100 βββββββββββ[37mβββββββββ 47s 1s/step - loss: 49.9200 - sparse_categorical_accuracy: 0.2022
56/100 βββββββββββ[37mβββββββββ 46s 1s/step - loss: 49.7896 - sparse_categorical_accuracy: 0.2027
57/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 49.6620 - sparse_categorical_accuracy: 0.2032
58/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 49.5372 - sparse_categorical_accuracy: 0.2037
59/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 49.4152 - sparse_categorical_accuracy: 0.2041
60/100 ββββββββββββ[37mββββββββ 42s 1s/step - loss: 49.2957 - sparse_categorical_accuracy: 0.2046
61/100 ββββββββββββ[37mββββββββ 41s 1s/step - loss: 49.1790 - sparse_categorical_accuracy: 0.2050
62/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 49.0646 - sparse_categorical_accuracy: 0.2054
63/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 48.9525 - sparse_categorical_accuracy: 0.2058
64/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 48.8427 - sparse_categorical_accuracy: 0.2062
65/100 βββββββββββββ[37mβββββββ 36s 1s/step - loss: 48.7353 - sparse_categorical_accuracy: 0.2065
66/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 48.6299 - sparse_categorical_accuracy: 0.2069
67/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 48.5266 - sparse_categorical_accuracy: 0.2072
68/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 48.4277 - sparse_categorical_accuracy: 0.2075
69/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 48.3308 - sparse_categorical_accuracy: 0.2078
70/100 ββββββββββββββ[37mββββββ 31s 1s/step - loss: 48.2357 - sparse_categorical_accuracy: 0.2081
71/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 48.1423 - sparse_categorical_accuracy: 0.2084
72/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 48.0505 - sparse_categorical_accuracy: 0.2087
73/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 47.9604 - sparse_categorical_accuracy: 0.2090
74/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 47.8719 - sparse_categorical_accuracy: 0.2093
75/100 βββββββββββββββ[37mβββββ 26s 1s/step - loss: 47.7852 - sparse_categorical_accuracy: 0.2096
76/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 47.7000 - sparse_categorical_accuracy: 0.2098
77/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 47.6164 - sparse_categorical_accuracy: 0.2101
78/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 47.5342 - sparse_categorical_accuracy: 0.2104
79/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 47.4536 - sparse_categorical_accuracy: 0.2106
80/100 ββββββββββββββββ[37mββββ 21s 1s/step - loss: 47.3744 - sparse_categorical_accuracy: 0.2109
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 47.2967 - sparse_categorical_accuracy: 0.2112
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 47.2202 - sparse_categorical_accuracy: 0.2114
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 47.1450 - sparse_categorical_accuracy: 0.2117
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 47.0711 - sparse_categorical_accuracy: 0.2119
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 46.9984 - sparse_categorical_accuracy: 0.2122
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 46.9270 - sparse_categorical_accuracy: 0.2124
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 46.8568 - sparse_categorical_accuracy: 0.2126
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 46.7877 - sparse_categorical_accuracy: 0.2129
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 46.7196 - sparse_categorical_accuracy: 0.2131
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 46.6525 - sparse_categorical_accuracy: 0.2133
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 46.5865 - sparse_categorical_accuracy: 0.2135
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 46.5215 - sparse_categorical_accuracy: 0.2137
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 46.4574 - sparse_categorical_accuracy: 0.2139
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 46.3946 - sparse_categorical_accuracy: 0.2141
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 46.3327 - sparse_categorical_accuracy: 0.2143
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 46.2717 - sparse_categorical_accuracy: 0.2145
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 46.2115 - sparse_categorical_accuracy: 0.2147
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 46.1522 - sparse_categorical_accuracy: 0.2149
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 46.0937 - sparse_categorical_accuracy: 0.2151
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 46.0345 - sparse_categorical_accuracy: 0.2154
100/100 ββββββββββββββββββββ 119s 1s/step - loss: 45.9764 - sparse_categorical_accuracy: 0.2156 - val_loss: 4122951.0000 - val_sparse_categorical_accuracy: 0.3154
Epoch 2/20
1/100 [37mββββββββββββββββββββ 1:44 1s/step - loss: 36.7920 - sparse_categorical_accuracy: 0.2500
2/100 [37mββββββββββββββββββββ 1:42 1s/step - loss: 36.8501 - sparse_categorical_accuracy: 0.2188
3/100 [37mββββββββββββββββββββ 1:39 1s/step - loss: 36.8194 - sparse_categorical_accuracy: 0.2049
4/100 [37mββββββββββββββββββββ 1:37 1s/step - loss: 36.7948 - sparse_categorical_accuracy: 0.1947
5/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 36.7802 - sparse_categorical_accuracy: 0.1907
6/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 36.7761 - sparse_categorical_accuracy: 0.1911
7/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 36.7720 - sparse_categorical_accuracy: 0.1937
8/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 36.7660 - sparse_categorical_accuracy: 0.1964
9/100 β[37mβββββββββββββββββββ 1:32 1s/step - loss: 36.7617 - sparse_categorical_accuracy: 0.1977
10/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 36.7567 - sparse_categorical_accuracy: 0.1992
11/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 36.7558 - sparse_categorical_accuracy: 0.2007
12/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 36.7534 - sparse_categorical_accuracy: 0.2022
13/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 36.7539 - sparse_categorical_accuracy: 0.2033
14/100 ββ[37mββββββββββββββββββ 1:27 1s/step - loss: 36.7521 - sparse_categorical_accuracy: 0.2049
15/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 36.7500 - sparse_categorical_accuracy: 0.2064
16/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 36.7464 - sparse_categorical_accuracy: 0.2087
17/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 36.7410 - sparse_categorical_accuracy: 0.2116
18/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 36.7356 - sparse_categorical_accuracy: 0.2138
19/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 36.7314 - sparse_categorical_accuracy: 0.2157
20/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 36.7275 - sparse_categorical_accuracy: 0.2178
21/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 36.7235 - sparse_categorical_accuracy: 0.2196
22/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 36.7189 - sparse_categorical_accuracy: 0.2218
23/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 36.7141 - sparse_categorical_accuracy: 0.2241
24/100 ββββ[37mββββββββββββββββ 1:17 1s/step - loss: 36.7087 - sparse_categorical_accuracy: 0.2262
25/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 36.7027 - sparse_categorical_accuracy: 0.2283
26/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 36.6970 - sparse_categorical_accuracy: 0.2303
27/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 36.6911 - sparse_categorical_accuracy: 0.2325
28/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 36.6862 - sparse_categorical_accuracy: 0.2342
29/100 βββββ[37mβββββββββββββββ 1:12 1s/step - loss: 36.6818 - sparse_categorical_accuracy: 0.2357
30/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 36.6766 - sparse_categorical_accuracy: 0.2372
31/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 36.6717 - sparse_categorical_accuracy: 0.2387
32/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 36.6670 - sparse_categorical_accuracy: 0.2403
33/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 36.6629 - sparse_categorical_accuracy: 0.2418
34/100 ββββββ[37mββββββββββββββ 1:07 1s/step - loss: 36.6591 - sparse_categorical_accuracy: 0.2431
35/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 36.6551 - sparse_categorical_accuracy: 0.2444
36/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 36.6513 - sparse_categorical_accuracy: 0.2456
37/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 36.6478 - sparse_categorical_accuracy: 0.2467
38/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 36.6441 - sparse_categorical_accuracy: 0.2477
39/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 36.6405 - sparse_categorical_accuracy: 0.2487
40/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 36.6368 - sparse_categorical_accuracy: 0.2497
41/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 36.6331 - sparse_categorical_accuracy: 0.2507
42/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 36.6330 - sparse_categorical_accuracy: 0.2515
43/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 36.6330 - sparse_categorical_accuracy: 0.2523
44/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 36.6331 - sparse_categorical_accuracy: 0.2531
45/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 36.6330 - sparse_categorical_accuracy: 0.2538
46/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 36.6330 - sparse_categorical_accuracy: 0.2546
47/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 36.6330 - sparse_categorical_accuracy: 0.2554
48/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 36.6330 - sparse_categorical_accuracy: 0.2561
49/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 36.6331 - sparse_categorical_accuracy: 0.2568
50/100 ββββββββββ[37mββββββββββ 51s 1s/step - loss: 36.6331 - sparse_categorical_accuracy: 0.2575
51/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 36.6332 - sparse_categorical_accuracy: 0.2582
52/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 36.6332 - sparse_categorical_accuracy: 0.2588
53/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 36.6331 - sparse_categorical_accuracy: 0.2594
54/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 36.6330 - sparse_categorical_accuracy: 0.2600
55/100 βββββββββββ[37mβββββββββ 46s 1s/step - loss: 36.6329 - sparse_categorical_accuracy: 0.2606
56/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 36.6331 - sparse_categorical_accuracy: 0.2612
57/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 36.6332 - sparse_categorical_accuracy: 0.2618
58/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 36.6332 - sparse_categorical_accuracy: 0.2624
59/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 36.6331 - sparse_categorical_accuracy: 0.2630
60/100 ββββββββββββ[37mββββββββ 41s 1s/step - loss: 36.6331 - sparse_categorical_accuracy: 0.2636
61/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 36.6330 - sparse_categorical_accuracy: 0.2641
62/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 36.6330 - sparse_categorical_accuracy: 0.2646
63/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 36.6329 - sparse_categorical_accuracy: 0.2652
64/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 36.6329 - sparse_categorical_accuracy: 0.2657
65/100 βββββββββββββ[37mβββββββ 36s 1s/step - loss: 36.6330 - sparse_categorical_accuracy: 0.2662
66/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 36.6332 - sparse_categorical_accuracy: 0.2667
67/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 36.6336 - sparse_categorical_accuracy: 0.2671
68/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 36.6340 - sparse_categorical_accuracy: 0.2674
69/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 36.6346 - sparse_categorical_accuracy: 0.2678
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 36.6352 - sparse_categorical_accuracy: 0.2682
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 36.6359 - sparse_categorical_accuracy: 0.2685
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 36.6365 - sparse_categorical_accuracy: 0.2688
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 36.6371 - sparse_categorical_accuracy: 0.2690
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 36.6377 - sparse_categorical_accuracy: 0.2693
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 36.6384 - sparse_categorical_accuracy: 0.2696
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 36.6389 - sparse_categorical_accuracy: 0.2698
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 36.6394 - sparse_categorical_accuracy: 0.2700
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 36.6398 - sparse_categorical_accuracy: 0.2703
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 36.6401 - sparse_categorical_accuracy: 0.2706
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 36.6406 - sparse_categorical_accuracy: 0.2708
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 36.6411 - sparse_categorical_accuracy: 0.2710
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 36.6415 - sparse_categorical_accuracy: 0.2712
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 36.6419 - sparse_categorical_accuracy: 0.2714
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 36.6423 - sparse_categorical_accuracy: 0.2716
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 36.6426 - sparse_categorical_accuracy: 0.2718
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 36.6429 - sparse_categorical_accuracy: 0.2720
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 36.6431 - sparse_categorical_accuracy: 0.2723
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 36.6432 - sparse_categorical_accuracy: 0.2725
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 36.6433 - sparse_categorical_accuracy: 0.2727
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 36.6434 - sparse_categorical_accuracy: 0.2730
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 36.6435 - sparse_categorical_accuracy: 0.2732
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 36.6435 - sparse_categorical_accuracy: 0.2734
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 36.6434 - sparse_categorical_accuracy: 0.2736
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 36.6432 - sparse_categorical_accuracy: 0.2738
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 36.6430 - sparse_categorical_accuracy: 0.2740
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 36.6427 - sparse_categorical_accuracy: 0.2742
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 36.6424 - sparse_categorical_accuracy: 0.2744
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 36.6421 - sparse_categorical_accuracy: 0.2746
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 36.6418 - sparse_categorical_accuracy: 0.2748
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 36.6402 - sparse_categorical_accuracy: 0.2749
100/100 ββββββββββββββββββββ 108s 1s/step - loss: 36.6386 - sparse_categorical_accuracy: 0.2751 - val_loss: 20961250112658389073920.0000 - val_sparse_categorical_accuracy: 0.3191
Epoch 3/20
1/100 [37mββββββββββββββββββββ 57:33 35s/step - loss: 35.9745 - sparse_categorical_accuracy: 0.3438
2/100 [37mββββββββββββββββββββ 1:39 1s/step - loss: 36.1432 - sparse_categorical_accuracy: 0.3359
3/100 [37mββββββββββββββββββββ 1:38 1s/step - loss: 36.1628 - sparse_categorical_accuracy: 0.3420
4/100 [37mββββββββββββββββββββ 1:39 1s/step - loss: 36.1912 - sparse_categorical_accuracy: 0.3424
5/100 β[37mβββββββββββββββββββ 1:38 1s/step - loss: 36.2222 - sparse_categorical_accuracy: 0.3390
6/100 β[37mβββββββββββββββββββ 1:37 1s/step - loss: 36.2318 - sparse_categorical_accuracy: 0.3345
7/100 β[37mβββββββββββββββββββ 1:36 1s/step - loss: 36.2484 - sparse_categorical_accuracy: 0.3301
8/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 36.2639 - sparse_categorical_accuracy: 0.3284
9/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 36.2697 - sparse_categorical_accuracy: 0.3282
10/100 ββ[37mββββββββββββββββββ 1:33 1s/step - loss: 36.2697 - sparse_categorical_accuracy: 0.3304
11/100 ββ[37mββββββββββββββββββ 1:32 1s/step - loss: 36.2697 - sparse_categorical_accuracy: 0.3316
12/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 36.2714 - sparse_categorical_accuracy: 0.3319
13/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 36.2731 - sparse_categorical_accuracy: 0.3319
14/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 36.2716 - sparse_categorical_accuracy: 0.3325
15/100 βββ[37mβββββββββββββββββ 1:27 1s/step - loss: 36.2714 - sparse_categorical_accuracy: 0.3327
16/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 36.2703 - sparse_categorical_accuracy: 0.3325
17/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 36.2685 - sparse_categorical_accuracy: 0.3322
18/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 36.2665 - sparse_categorical_accuracy: 0.3322
19/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 36.2672 - sparse_categorical_accuracy: 0.3320
20/100 ββββ[37mββββββββββββββββ 1:22 1s/step - loss: 36.2689 - sparse_categorical_accuracy: 0.3316
21/100 ββββ[37mββββββββββββββββ 1:22 1s/step - loss: 36.2700 - sparse_categorical_accuracy: 0.3311
22/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 36.2712 - sparse_categorical_accuracy: 0.3307
23/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 36.2732 - sparse_categorical_accuracy: 0.3301
24/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 36.2753 - sparse_categorical_accuracy: 0.3293
25/100 βββββ[37mβββββββββββββββ 1:18 1s/step - loss: 36.2772 - sparse_categorical_accuracy: 0.3284
26/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 36.2789 - sparse_categorical_accuracy: 0.3275
27/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 36.2803 - sparse_categorical_accuracy: 0.3266
28/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 36.2832 - sparse_categorical_accuracy: 0.3258
29/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 36.2886 - sparse_categorical_accuracy: 0.3251
30/100 ββββββ[37mββββββββββββββ 1:12 1s/step - loss: 36.2944 - sparse_categorical_accuracy: 0.3245
31/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 36.3001 - sparse_categorical_accuracy: 0.3237
32/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 36.3053 - sparse_categorical_accuracy: 0.3231
33/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 36.3102 - sparse_categorical_accuracy: 0.3226
34/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 36.3150 - sparse_categorical_accuracy: 0.3221
35/100 βββββββ[37mβββββββββββββ 1:07 1s/step - loss: 36.3196 - sparse_categorical_accuracy: 0.3216
36/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 36.3239 - sparse_categorical_accuracy: 0.3212
37/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 36.3281 - sparse_categorical_accuracy: 0.3209
38/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 36.3322 - sparse_categorical_accuracy: 0.3204
39/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 36.3358 - sparse_categorical_accuracy: 0.3201
40/100 ββββββββ[37mββββββββββββ 1:02 1s/step - loss: 36.3392 - sparse_categorical_accuracy: 0.3199
41/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 36.3423 - sparse_categorical_accuracy: 0.3196
42/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 36.3453 - sparse_categorical_accuracy: 0.3195
43/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 36.3482 - sparse_categorical_accuracy: 0.3193
44/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 36.3509 - sparse_categorical_accuracy: 0.3193
45/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 36.3534 - sparse_categorical_accuracy: 0.3192
46/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 36.3557 - sparse_categorical_accuracy: 0.3191
47/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 36.3577 - sparse_categorical_accuracy: 0.3191
48/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 36.3597 - sparse_categorical_accuracy: 0.3190
49/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 36.3617 - sparse_categorical_accuracy: 0.3188
50/100 ββββββββββ[37mββββββββββ 51s 1s/step - loss: 36.3636 - sparse_categorical_accuracy: 0.3186
51/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 36.3654 - sparse_categorical_accuracy: 0.3183
52/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 36.3671 - sparse_categorical_accuracy: 0.3181
53/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 36.3687 - sparse_categorical_accuracy: 0.3179
54/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 36.3705 - sparse_categorical_accuracy: 0.3177
55/100 βββββββββββ[37mβββββββββ 46s 1s/step - loss: 36.3723 - sparse_categorical_accuracy: 0.3175
56/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 36.3744 - sparse_categorical_accuracy: 0.3173
57/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 36.3764 - sparse_categorical_accuracy: 0.3171
58/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 36.3784 - sparse_categorical_accuracy: 0.3170
59/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 36.3805 - sparse_categorical_accuracy: 0.3168
60/100 ββββββββββββ[37mββββββββ 41s 1s/step - loss: 36.3824 - sparse_categorical_accuracy: 0.3167
61/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 36.3843 - sparse_categorical_accuracy: 0.3166
62/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 36.3862 - sparse_categorical_accuracy: 0.3165
63/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 36.3879 - sparse_categorical_accuracy: 0.3164
64/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 36.3893 - sparse_categorical_accuracy: 0.3163
65/100 βββββββββββββ[37mβββββββ 36s 1s/step - loss: 36.3907 - sparse_categorical_accuracy: 0.3163
66/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 36.3921 - sparse_categorical_accuracy: 0.3162
67/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 36.3933 - sparse_categorical_accuracy: 0.3162
68/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 36.3944 - sparse_categorical_accuracy: 0.3161
69/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 36.3953 - sparse_categorical_accuracy: 0.3161
70/100 ββββββββββββββ[37mββββββ 31s 1s/step - loss: 36.3962 - sparse_categorical_accuracy: 0.3160
71/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 36.3971 - sparse_categorical_accuracy: 0.3160
72/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 36.3978 - sparse_categorical_accuracy: 0.3159
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 36.3986 - sparse_categorical_accuracy: 0.3159
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 36.3994 - sparse_categorical_accuracy: 0.3158
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 36.4003 - sparse_categorical_accuracy: 0.3157
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 36.4011 - sparse_categorical_accuracy: 0.3157
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 36.4019 - sparse_categorical_accuracy: 0.3156
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 36.4026 - sparse_categorical_accuracy: 0.3156
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 36.4032 - sparse_categorical_accuracy: 0.3155
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 36.4038 - sparse_categorical_accuracy: 0.3155
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 36.4045 - sparse_categorical_accuracy: 0.3155
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 36.4051 - sparse_categorical_accuracy: 0.3154
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 36.4058 - sparse_categorical_accuracy: 0.3154
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 36.4066 - sparse_categorical_accuracy: 0.3154
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 36.4072 - sparse_categorical_accuracy: 0.3154
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 36.4079 - sparse_categorical_accuracy: 0.3154
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 36.4085 - sparse_categorical_accuracy: 0.3154
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 36.4091 - sparse_categorical_accuracy: 0.3154
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 36.4097 - sparse_categorical_accuracy: 0.3154
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 36.4104 - sparse_categorical_accuracy: 0.3154
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 36.4110 - sparse_categorical_accuracy: 0.3154
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 36.4117 - sparse_categorical_accuracy: 0.3153
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 36.4123 - sparse_categorical_accuracy: 0.3153
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 36.4129 - sparse_categorical_accuracy: 0.3152
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 36.4135 - sparse_categorical_accuracy: 0.3152
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 36.4142 - sparse_categorical_accuracy: 0.3152
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 36.4150 - sparse_categorical_accuracy: 0.3151
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 36.4157 - sparse_categorical_accuracy: 0.3151
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 36.4164 - sparse_categorical_accuracy: 0.3151
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 36.4156 - sparse_categorical_accuracy: 0.3150
100/100 ββββββββββββββββββββ 142s 1s/step - loss: 36.4148 - sparse_categorical_accuracy: 0.3150 - val_loss: 14661139300352.0000 - val_sparse_categorical_accuracy: 0.2240
Epoch 4/20
1/100 [37mββββββββββββββββββββ 1:40 1s/step - loss: 36.7380 - sparse_categorical_accuracy: 0.5312
2/100 [37mββββββββββββββββββββ 1:40 1s/step - loss: 36.7969 - sparse_categorical_accuracy: 0.4844
3/100 [37mββββββββββββββββββββ 1:38 1s/step - loss: 36.7860 - sparse_categorical_accuracy: 0.4653
4/100 [37mββββββββββββββββββββ 1:36 1s/step - loss: 36.7852 - sparse_categorical_accuracy: 0.4447
5/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 36.7560 - sparse_categorical_accuracy: 0.4370
6/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 36.7412 - sparse_categorical_accuracy: 0.4293
7/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 36.7300 - sparse_categorical_accuracy: 0.4221
8/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 36.7233 - sparse_categorical_accuracy: 0.4148
9/100 β[37mβββββββββββββββββββ 1:32 1s/step - loss: 36.7190 - sparse_categorical_accuracy: 0.4073
10/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 36.7201 - sparse_categorical_accuracy: 0.3990
11/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 36.7176 - sparse_categorical_accuracy: 0.3925
12/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 36.7097 - sparse_categorical_accuracy: 0.3882
13/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 36.7017 - sparse_categorical_accuracy: 0.3850
14/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 36.6936 - sparse_categorical_accuracy: 0.3819
15/100 βββ[37mβββββββββββββββββ 1:27 1s/step - loss: 36.6858 - sparse_categorical_accuracy: 0.3786
16/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 36.6785 - sparse_categorical_accuracy: 0.3752
17/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 36.6711 - sparse_categorical_accuracy: 0.3723
18/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 36.6637 - sparse_categorical_accuracy: 0.3695
19/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 36.6692 - sparse_categorical_accuracy: 0.3668
20/100 ββββ[37mββββββββββββββββ 1:22 1s/step - loss: 36.6728 - sparse_categorical_accuracy: 0.3647
21/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 36.6748 - sparse_categorical_accuracy: 0.3631
22/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 36.6766 - sparse_categorical_accuracy: 0.3616
23/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 36.6783 - sparse_categorical_accuracy: 0.3601
24/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 36.6799 - sparse_categorical_accuracy: 0.3588
25/100 βββββ[37mβββββββββββββββ 1:17 1s/step - loss: 36.6818 - sparse_categorical_accuracy: 0.3576
26/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 36.6836 - sparse_categorical_accuracy: 0.3565
27/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 36.6852 - sparse_categorical_accuracy: 0.3555
28/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 36.6879 - sparse_categorical_accuracy: 0.3545
29/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 36.6908 - sparse_categorical_accuracy: 0.3535
30/100 ββββββ[37mββββββββββββββ 1:12 1s/step - loss: 36.6939 - sparse_categorical_accuracy: 0.3525
31/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 36.6971 - sparse_categorical_accuracy: 0.3515
32/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 36.7002 - sparse_categorical_accuracy: 0.3506
33/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 36.7032 - sparse_categorical_accuracy: 0.3498
34/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 36.7059 - sparse_categorical_accuracy: 0.3492
35/100 βββββββ[37mβββββββββββββ 1:07 1s/step - loss: 36.7085 - sparse_categorical_accuracy: 0.3487
36/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 36.7110 - sparse_categorical_accuracy: 0.3481
37/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 36.7138 - sparse_categorical_accuracy: 0.3476
38/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 36.7167 - sparse_categorical_accuracy: 0.3472
39/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 36.7196 - sparse_categorical_accuracy: 0.3468
40/100 ββββββββ[37mββββββββββββ 1:02 1s/step - loss: 36.7225 - sparse_categorical_accuracy: 0.3463
41/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 36.7254 - sparse_categorical_accuracy: 0.3459
42/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 36.7283 - sparse_categorical_accuracy: 0.3455
43/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 36.7311 - sparse_categorical_accuracy: 0.3450
44/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 36.7339 - sparse_categorical_accuracy: 0.3446
45/100 βββββββββ[37mβββββββββββ 57s 1s/step - loss: 36.7364 - sparse_categorical_accuracy: 0.3441
46/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 36.7387 - sparse_categorical_accuracy: 0.3437
47/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 36.7410 - sparse_categorical_accuracy: 0.3432
48/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 36.7433 - sparse_categorical_accuracy: 0.3428
49/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 36.7454 - sparse_categorical_accuracy: 0.3424
50/100 ββββββββββ[37mββββββββββ 51s 1s/step - loss: 36.7475 - sparse_categorical_accuracy: 0.3420
51/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 36.7496 - sparse_categorical_accuracy: 0.3416
52/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 36.7515 - sparse_categorical_accuracy: 0.3413
53/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 36.7532 - sparse_categorical_accuracy: 0.3410
54/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 36.7547 - sparse_categorical_accuracy: 0.3407
55/100 βββββββββββ[37mβββββββββ 46s 1s/step - loss: 36.7561 - sparse_categorical_accuracy: 0.3404
56/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 36.7575 - sparse_categorical_accuracy: 0.3401
57/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 36.7590 - sparse_categorical_accuracy: 0.3398
58/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 36.7603 - sparse_categorical_accuracy: 0.3396
59/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 36.7617 - sparse_categorical_accuracy: 0.3393
60/100 ββββββββββββ[37mββββββββ 41s 1s/step - loss: 36.7629 - sparse_categorical_accuracy: 0.3390
61/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 36.7641 - sparse_categorical_accuracy: 0.3387
62/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 36.7653 - sparse_categorical_accuracy: 0.3383
63/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 36.7665 - sparse_categorical_accuracy: 0.3380
64/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 36.7676 - sparse_categorical_accuracy: 0.3376
65/100 βββββββββββββ[37mβββββββ 36s 1s/step - loss: 36.7687 - sparse_categorical_accuracy: 0.3373
66/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 36.7696 - sparse_categorical_accuracy: 0.3369
67/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 36.7705 - sparse_categorical_accuracy: 0.3366
68/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 36.7713 - sparse_categorical_accuracy: 0.3363
69/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 36.7720 - sparse_categorical_accuracy: 0.3360
70/100 ββββββββββββββ[37mββββββ 31s 1s/step - loss: 36.7725 - sparse_categorical_accuracy: 0.3357
71/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 36.7730 - sparse_categorical_accuracy: 0.3354
72/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 36.7734 - sparse_categorical_accuracy: 0.3352
73/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 36.7736 - sparse_categorical_accuracy: 0.3350
74/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 36.7739 - sparse_categorical_accuracy: 0.3348
75/100 βββββββββββββββ[37mβββββ 26s 1s/step - loss: 36.7742 - sparse_categorical_accuracy: 0.3345
76/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 36.7744 - sparse_categorical_accuracy: 0.3343
77/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 36.7746 - sparse_categorical_accuracy: 0.3340
78/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 36.7747 - sparse_categorical_accuracy: 0.3338
79/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 36.7747 - sparse_categorical_accuracy: 0.3335
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 36.7747 - sparse_categorical_accuracy: 0.3333
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 36.7746 - sparse_categorical_accuracy: 0.3330
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 36.7745 - sparse_categorical_accuracy: 0.3328
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 36.7743 - sparse_categorical_accuracy: 0.3325
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 36.7741 - sparse_categorical_accuracy: 0.3322
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 36.7739 - sparse_categorical_accuracy: 0.3320
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 36.7737 - sparse_categorical_accuracy: 0.3317
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 36.7735 - sparse_categorical_accuracy: 0.3315
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 36.7732 - sparse_categorical_accuracy: 0.3312
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 36.7729 - sparse_categorical_accuracy: 0.3310
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 36.7727 - sparse_categorical_accuracy: 0.3307
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 36.7724 - sparse_categorical_accuracy: 0.3305
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 36.7721 - sparse_categorical_accuracy: 0.3303
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 36.7718 - sparse_categorical_accuracy: 0.3300
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 36.7714 - sparse_categorical_accuracy: 0.3298
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 36.7711 - sparse_categorical_accuracy: 0.3296
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 36.7707 - sparse_categorical_accuracy: 0.3294
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 36.7704 - sparse_categorical_accuracy: 0.3293
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 36.7701 - sparse_categorical_accuracy: 0.3291
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 36.7697 - sparse_categorical_accuracy: 0.3289
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 36.7677 - sparse_categorical_accuracy: 0.3288
100/100 ββββββββββββββββββββ 110s 1s/step - loss: 36.7658 - sparse_categorical_accuracy: 0.3286 - val_loss: 2640681721921536.0000 - val_sparse_categorical_accuracy: 0.3542
Epoch 5/20
1/100 [37mββββββββββββββββββββ 1:43 1s/step - loss: 36.6004 - sparse_categorical_accuracy: 0.2188
2/100 [37mββββββββββββββββββββ 1:42 1s/step - loss: 36.5184 - sparse_categorical_accuracy: 0.2734
3/100 [37mββββββββββββββββββββ 1:43 1s/step - loss: 36.4827 - sparse_categorical_accuracy: 0.2969
4/100 [37mββββββββββββββββββββ 1:42 1s/step - loss: 36.4396 - sparse_categorical_accuracy: 0.3086
5/100 β[37mβββββββββββββββββββ 1:42 1s/step - loss: 36.4243 - sparse_categorical_accuracy: 0.3131
6/100 β[37mβββββββββββββββββββ 1:40 1s/step - loss: 36.4060 - sparse_categorical_accuracy: 0.3165
7/100 β[37mβββββββββββββββββββ 1:38 1s/step - loss: 36.4471 - sparse_categorical_accuracy: 0.3178
8/100 β[37mβββββββββββββββββββ 1:37 1s/step - loss: 36.4807 - sparse_categorical_accuracy: 0.3177
9/100 β[37mβββββββββββββββββββ 1:36 1s/step - loss: 36.5028 - sparse_categorical_accuracy: 0.3163
10/100 ββ[37mββββββββββββββββββ 1:35 1s/step - loss: 36.5155 - sparse_categorical_accuracy: 0.3162
11/100 ββ[37mββββββββββββββββββ 1:34 1s/step - loss: 36.5232 - sparse_categorical_accuracy: 0.3151
12/100 ββ[37mββββββββββββββββββ 1:33 1s/step - loss: 36.5263 - sparse_categorical_accuracy: 0.3147
13/100 ββ[37mββββββββββββββββββ 1:32 1s/step - loss: 36.5277 - sparse_categorical_accuracy: 0.3145
14/100 ββ[37mββββββββββββββββββ 1:32 1s/step - loss: 36.5289 - sparse_categorical_accuracy: 0.3139
15/100 βββ[37mβββββββββββββββββ 1:31 1s/step - loss: 36.5328 - sparse_categorical_accuracy: 0.3130
16/100 βββ[37mβββββββββββββββββ 1:30 1s/step - loss: 36.5365 - sparse_categorical_accuracy: 0.3120
17/100 βββ[37mβββββββββββββββββ 1:29 1s/step - loss: 36.5411 - sparse_categorical_accuracy: 0.3116
18/100 βββ[37mβββββββββββββββββ 1:28 1s/step - loss: 36.5457 - sparse_categorical_accuracy: 0.3119
19/100 βββ[37mβββββββββββββββββ 1:27 1s/step - loss: 36.5504 - sparse_categorical_accuracy: 0.3127
20/100 ββββ[37mββββββββββββββββ 1:26 1s/step - loss: 36.5570 - sparse_categorical_accuracy: 0.3130
21/100 ββββ[37mββββββββββββββββ 1:25 1s/step - loss: 36.5644 - sparse_categorical_accuracy: 0.3134
22/100 ββββ[37mββββββββββββββββ 1:23 1s/step - loss: 36.5724 - sparse_categorical_accuracy: 0.3134
23/100 ββββ[37mββββββββββββββββ 1:22 1s/step - loss: 36.5828 - sparse_categorical_accuracy: 0.3136
24/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 36.6011 - sparse_categorical_accuracy: 0.3138
25/100 βββββ[37mβββββββββββββββ 1:20 1s/step - loss: 36.6181 - sparse_categorical_accuracy: 0.3137
26/100 βββββ[37mβββββββββββββββ 1:19 1s/step - loss: 36.6334 - sparse_categorical_accuracy: 0.3140
27/100 βββββ[37mβββββββββββββββ 1:18 1s/step - loss: 36.6477 - sparse_categorical_accuracy: 0.3142
28/100 βββββ[37mβββββββββββββββ 1:17 1s/step - loss: 36.6605 - sparse_categorical_accuracy: 0.3147
29/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 36.6723 - sparse_categorical_accuracy: 0.3149
30/100 ββββββ[37mββββββββββββββ 1:15 1s/step - loss: 36.6831 - sparse_categorical_accuracy: 0.3153
31/100 ββββββ[37mββββββββββββββ 1:14 1s/step - loss: 36.6929 - sparse_categorical_accuracy: 0.3157
32/100 ββββββ[37mββββββββββββββ 1:13 1s/step - loss: 36.7023 - sparse_categorical_accuracy: 0.3160
33/100 ββββββ[37mββββββββββββββ 1:12 1s/step - loss: 36.7110 - sparse_categorical_accuracy: 0.3161
34/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 36.7188 - sparse_categorical_accuracy: 0.3161
35/100 βββββββ[37mβββββββββββββ 1:10 1s/step - loss: 36.7264 - sparse_categorical_accuracy: 0.3161
36/100 βββββββ[37mβββββββββββββ 1:09 1s/step - loss: 36.7333 - sparse_categorical_accuracy: 0.3160
37/100 βββββββ[37mβββββββββββββ 1:08 1s/step - loss: 36.7404 - sparse_categorical_accuracy: 0.3160
38/100 βββββββ[37mβββββββββββββ 1:07 1s/step - loss: 36.7483 - sparse_categorical_accuracy: 0.3158
39/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 36.7558 - sparse_categorical_accuracy: 0.3156
40/100 ββββββββ[37mββββββββββββ 1:05 1s/step - loss: 36.7629 - sparse_categorical_accuracy: 0.3155
41/100 ββββββββ[37mββββββββββββ 1:04 1s/step - loss: 36.7698 - sparse_categorical_accuracy: 0.3153
42/100 ββββββββ[37mββββββββββββ 1:03 1s/step - loss: 36.7760 - sparse_categorical_accuracy: 0.3151
43/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 36.7818 - sparse_categorical_accuracy: 0.3150
44/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 36.7870 - sparse_categorical_accuracy: 0.3149
45/100 βββββββββ[37mβββββββββββ 59s 1s/step - loss: 36.7922 - sparse_categorical_accuracy: 0.3147
46/100 βββββββββ[37mβββββββββββ 58s 1s/step - loss: 36.7971 - sparse_categorical_accuracy: 0.3145
47/100 βββββββββ[37mβββββββββββ 57s 1s/step - loss: 36.8016 - sparse_categorical_accuracy: 0.3144
48/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 36.8057 - sparse_categorical_accuracy: 0.3143
49/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 36.8098 - sparse_categorical_accuracy: 0.3142
50/100 ββββββββββ[37mββββββββββ 54s 1s/step - loss: 36.8136 - sparse_categorical_accuracy: 0.3141
51/100 ββββββββββ[37mββββββββββ 53s 1s/step - loss: 36.8172 - sparse_categorical_accuracy: 0.3141
52/100 ββββββββββ[37mββββββββββ 52s 1s/step - loss: 36.8203 - sparse_categorical_accuracy: 0.3141
53/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 36.8234 - sparse_categorical_accuracy: 0.3141
54/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 36.8262 - sparse_categorical_accuracy: 0.3141
55/100 βββββββββββ[37mβββββββββ 48s 1s/step - loss: 36.8288 - sparse_categorical_accuracy: 0.3140
56/100 βββββββββββ[37mβββββββββ 47s 1s/step - loss: 36.8313 - sparse_categorical_accuracy: 0.3140
57/100 βββββββββββ[37mβββββββββ 46s 1s/step - loss: 36.8338 - sparse_categorical_accuracy: 0.3139
58/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 36.8362 - sparse_categorical_accuracy: 0.3139
59/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 36.8383 - sparse_categorical_accuracy: 0.3139
60/100 ββββββββββββ[37mββββββββ 43s 1s/step - loss: 36.8402 - sparse_categorical_accuracy: 0.3138
61/100 ββββββββββββ[37mββββββββ 42s 1s/step - loss: 36.8420 - sparse_categorical_accuracy: 0.3137
62/100 ββββββββββββ[37mββββββββ 41s 1s/step - loss: 36.8436 - sparse_categorical_accuracy: 0.3137
63/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 36.8450 - sparse_categorical_accuracy: 0.3136
64/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 36.8501 - sparse_categorical_accuracy: 0.3135
65/100 βββββββββββββ[37mβββββββ 37s 1s/step - loss: 36.8548 - sparse_categorical_accuracy: 0.3134
66/100 βββββββββββββ[37mβββββββ 36s 1s/step - loss: 36.8594 - sparse_categorical_accuracy: 0.3133
67/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 36.8637 - sparse_categorical_accuracy: 0.3132
68/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 36.8679 - sparse_categorical_accuracy: 0.3132
69/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 36.8722 - sparse_categorical_accuracy: 0.3131
70/100 ββββββββββββββ[37mββββββ 32s 1s/step - loss: 36.8765 - sparse_categorical_accuracy: 0.3130
71/100 ββββββββββββββ[37mββββββ 31s 1s/step - loss: 36.8808 - sparse_categorical_accuracy: 0.3129
72/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 36.8851 - sparse_categorical_accuracy: 0.3128
73/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 36.8893 - sparse_categorical_accuracy: 0.3127
74/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 36.8934 - sparse_categorical_accuracy: 0.3126
75/100 βββββββββββββββ[37mβββββ 26s 1s/step - loss: 36.8974 - sparse_categorical_accuracy: 0.3125
76/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 36.9016 - sparse_categorical_accuracy: 0.3124
77/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 36.9056 - sparse_categorical_accuracy: 0.3123
78/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 36.9097 - sparse_categorical_accuracy: 0.3122
79/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 36.9137 - sparse_categorical_accuracy: 0.3121
80/100 ββββββββββββββββ[37mββββ 21s 1s/step - loss: 36.9180 - sparse_categorical_accuracy: 0.3120
81/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 36.9223 - sparse_categorical_accuracy: 0.3119
82/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 36.9265 - sparse_categorical_accuracy: 0.3118
83/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 36.9306 - sparse_categorical_accuracy: 0.3117
84/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 36.9348 - sparse_categorical_accuracy: 0.3116
85/100 βββββββββββββββββ[37mβββ 16s 1s/step - loss: 36.9389 - sparse_categorical_accuracy: 0.3115
86/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 36.9430 - sparse_categorical_accuracy: 0.3114
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 36.9471 - sparse_categorical_accuracy: 0.3113
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 36.9511 - sparse_categorical_accuracy: 0.3112
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 36.9550 - sparse_categorical_accuracy: 0.3112
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 36.9589 - sparse_categorical_accuracy: 0.3111
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 36.9626 - sparse_categorical_accuracy: 0.3110
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 36.9663 - sparse_categorical_accuracy: 0.3109
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 36.9700 - sparse_categorical_accuracy: 0.3108
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 36.9734 - sparse_categorical_accuracy: 0.3107
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 36.9768 - sparse_categorical_accuracy: 0.3106
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 36.9801 - sparse_categorical_accuracy: 0.3105
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 36.9834 - sparse_categorical_accuracy: 0.3104
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 36.9866 - sparse_categorical_accuracy: 0.3103
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 36.9898 - sparse_categorical_accuracy: 0.3102
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 36.9913 - sparse_categorical_accuracy: 0.3101
100/100 ββββββββββββββββββββ 112s 1s/step - loss: 36.9928 - sparse_categorical_accuracy: 0.3100 - val_loss: 2087371157504536015273984.0000 - val_sparse_categorical_accuracy: 0.3004
Epoch 6/20
1/100 [37mββββββββββββββββββββ 1:43 1s/step - loss: 37.1168 - sparse_categorical_accuracy: 0.1875
2/100 [37mββββββββββββββββββββ 1:48 1s/step - loss: 37.1688 - sparse_categorical_accuracy: 0.1719
3/100 [37mββββββββββββββββββββ 1:46 1s/step - loss: 37.1452 - sparse_categorical_accuracy: 0.1944
4/100 [37mββββββββββββββββββββ 1:44 1s/step - loss: 37.0992 - sparse_categorical_accuracy: 0.2220
5/100 β[37mβββββββββββββββββββ 1:43 1s/step - loss: 37.0764 - sparse_categorical_accuracy: 0.2376
6/100 β[37mβββββββββββββββββββ 1:43 1s/step - loss: 37.0523 - sparse_categorical_accuracy: 0.2492
7/100 β[37mβββββββββββββββββββ 1:42 1s/step - loss: 37.0250 - sparse_categorical_accuracy: 0.2602
8/100 β[37mβββββββββββββββββββ 1:40 1s/step - loss: 36.9997 - sparse_categorical_accuracy: 0.2692
9/100 β[37mβββββββββββββββββββ 1:38 1s/step - loss: 36.9775 - sparse_categorical_accuracy: 0.2755
10/100 ββ[37mββββββββββββββββββ 1:37 1s/step - loss: 36.9576 - sparse_categorical_accuracy: 0.2805
11/100 ββ[37mββββββββββββββββββ 1:35 1s/step - loss: 36.9399 - sparse_categorical_accuracy: 0.2849
12/100 ββ[37mββββββββββββββββββ 1:34 1s/step - loss: 36.9274 - sparse_categorical_accuracy: 0.2881
13/100 ββ[37mββββββββββββββββββ 1:33 1s/step - loss: 36.9169 - sparse_categorical_accuracy: 0.2911
14/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 36.9084 - sparse_categorical_accuracy: 0.2931
15/100 βββ[37mβββββββββββββββββ 1:30 1s/step - loss: 36.8988 - sparse_categorical_accuracy: 0.2952
16/100 βββ[37mβββββββββββββββββ 1:29 1s/step - loss: 36.8877 - sparse_categorical_accuracy: 0.2976
17/100 βββ[37mβββββββββββββββββ 1:28 1s/step - loss: 36.8768 - sparse_categorical_accuracy: 0.3001
18/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 36.8669 - sparse_categorical_accuracy: 0.3020
19/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 36.8565 - sparse_categorical_accuracy: 0.3036
20/100 ββββ[37mββββββββββββββββ 1:25 1s/step - loss: 36.8455 - sparse_categorical_accuracy: 0.3054
21/100 ββββ[37mββββββββββββββββ 1:23 1s/step - loss: 36.8350 - sparse_categorical_accuracy: 0.3068
22/100 ββββ[37mββββββββββββββββ 1:22 1s/step - loss: 36.8242 - sparse_categorical_accuracy: 0.3080
23/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 36.8151 - sparse_categorical_accuracy: 0.3088
24/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 36.8065 - sparse_categorical_accuracy: 0.3096
25/100 βββββ[37mβββββββββββββββ 1:19 1s/step - loss: 36.7989 - sparse_categorical_accuracy: 0.3102
26/100 βββββ[37mβββββββββββββββ 1:18 1s/step - loss: 36.7921 - sparse_categorical_accuracy: 0.3105
27/100 βββββ[37mβββββββββββββββ 1:17 1s/step - loss: 36.7860 - sparse_categorical_accuracy: 0.3107
28/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 36.7804 - sparse_categorical_accuracy: 0.3107
29/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 36.7753 - sparse_categorical_accuracy: 0.3109
30/100 ββββββ[37mββββββββββββββ 1:14 1s/step - loss: 36.7707 - sparse_categorical_accuracy: 0.3113
31/100 ββββββ[37mββββββββββββββ 1:13 1s/step - loss: 36.7666 - sparse_categorical_accuracy: 0.3118
32/100 ββββββ[37mββββββββββββββ 1:12 1s/step - loss: 36.7625 - sparse_categorical_accuracy: 0.3123
33/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 36.7581 - sparse_categorical_accuracy: 0.3129
34/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 36.7541 - sparse_categorical_accuracy: 0.3132
35/100 βββββββ[37mβββββββββββββ 1:08 1s/step - loss: 36.7502 - sparse_categorical_accuracy: 0.3134
36/100 βββββββ[37mβββββββββββββ 1:07 1s/step - loss: 36.7466 - sparse_categorical_accuracy: 0.3136
37/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 36.7429 - sparse_categorical_accuracy: 0.3138
38/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 36.7391 - sparse_categorical_accuracy: 0.3140
39/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 36.7354 - sparse_categorical_accuracy: 0.3141
40/100 ββββββββ[37mββββββββββββ 1:03 1s/step - loss: 36.7317 - sparse_categorical_accuracy: 0.3141
41/100 ββββββββ[37mββββββββββββ 1:02 1s/step - loss: 36.7280 - sparse_categorical_accuracy: 0.3141
42/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 36.7242 - sparse_categorical_accuracy: 0.3142
43/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 36.7205 - sparse_categorical_accuracy: 0.3142
44/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 36.7167 - sparse_categorical_accuracy: 0.3143
45/100 βββββββββ[37mβββββββββββ 58s 1s/step - loss: 36.7129 - sparse_categorical_accuracy: 0.3144
46/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 36.7114 - sparse_categorical_accuracy: 0.3145
47/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 36.7097 - sparse_categorical_accuracy: 0.3146
48/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 36.7081 - sparse_categorical_accuracy: 0.3147
49/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 36.7067 - sparse_categorical_accuracy: 0.3148
50/100 ββββββββββ[37mββββββββββ 52s 1s/step - loss: 36.7053 - sparse_categorical_accuracy: 0.3149
51/100 ββββββββββ[37mββββββββββ 51s 1s/step - loss: 36.7043 - sparse_categorical_accuracy: 0.3150
52/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 36.7035 - sparse_categorical_accuracy: 0.3151
53/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 36.7027 - sparse_categorical_accuracy: 0.3152
54/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 36.7020 - sparse_categorical_accuracy: 0.3153
55/100 βββββββββββ[37mβββββββββ 47s 1s/step - loss: 36.7013 - sparse_categorical_accuracy: 0.3153
56/100 βββββββββββ[37mβββββββββ 46s 1s/step - loss: 36.7005 - sparse_categorical_accuracy: 0.3154
57/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 36.6997 - sparse_categorical_accuracy: 0.3155
58/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 36.6991 - sparse_categorical_accuracy: 0.3155
59/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 36.6983 - sparse_categorical_accuracy: 0.3156
60/100 ββββββββββββ[37mββββββββ 41s 1s/step - loss: 36.6977 - sparse_categorical_accuracy: 0.3156
61/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 36.6974 - sparse_categorical_accuracy: 0.3156
62/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 36.6971 - sparse_categorical_accuracy: 0.3156
63/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 36.6968 - sparse_categorical_accuracy: 0.3156
64/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 36.6963 - sparse_categorical_accuracy: 0.3157
65/100 βββββββββββββ[37mβββββββ 36s 1s/step - loss: 36.6959 - sparse_categorical_accuracy: 0.3157
66/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 36.6954 - sparse_categorical_accuracy: 0.3158
67/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 36.6949 - sparse_categorical_accuracy: 0.3159
68/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 36.6944 - sparse_categorical_accuracy: 0.3160
69/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 36.6939 - sparse_categorical_accuracy: 0.3161
70/100 ββββββββββββββ[37mββββββ 31s 1s/step - loss: 36.6933 - sparse_categorical_accuracy: 0.3162
71/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 36.6927 - sparse_categorical_accuracy: 0.3163
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 36.6921 - sparse_categorical_accuracy: 0.3164
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 36.6914 - sparse_categorical_accuracy: 0.3165
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 36.6907 - sparse_categorical_accuracy: 0.3166
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 36.6901 - sparse_categorical_accuracy: 0.3166
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 36.6897 - sparse_categorical_accuracy: 0.3167
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 36.6892 - sparse_categorical_accuracy: 0.3167
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 36.6887 - sparse_categorical_accuracy: 0.3168
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 36.6882 - sparse_categorical_accuracy: 0.3169
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 36.6878 - sparse_categorical_accuracy: 0.3170
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 36.6872 - sparse_categorical_accuracy: 0.3171
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 36.6867 - sparse_categorical_accuracy: 0.3172
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 36.6862 - sparse_categorical_accuracy: 0.3173
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 36.6858 - sparse_categorical_accuracy: 0.3173
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 36.6853 - sparse_categorical_accuracy: 0.3174
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 36.6847 - sparse_categorical_accuracy: 0.3175
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 36.6842 - sparse_categorical_accuracy: 0.3175
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 36.6835 - sparse_categorical_accuracy: 0.3176
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 36.6829 - sparse_categorical_accuracy: 0.3176
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 36.6823 - sparse_categorical_accuracy: 0.3177
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 36.6817 - sparse_categorical_accuracy: 0.3177
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 36.6810 - sparse_categorical_accuracy: 0.3177
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 36.6804 - sparse_categorical_accuracy: 0.3177
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 36.6802 - sparse_categorical_accuracy: 0.3178
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 36.6800 - sparse_categorical_accuracy: 0.3178
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 36.6798 - sparse_categorical_accuracy: 0.3179
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 36.6797 - sparse_categorical_accuracy: 0.3179
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 36.6795 - sparse_categorical_accuracy: 0.3180
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 36.6792 - sparse_categorical_accuracy: 0.3180
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 36.6775 - sparse_categorical_accuracy: 0.3181
100/100 ββββββββββββββββββββ 108s 1s/step - loss: 36.6758 - sparse_categorical_accuracy: 0.3182 - val_loss: 598952362161209344.0000 - val_sparse_categorical_accuracy: 0.4180
Epoch 7/20
1/100 [37mββββββββββββββββββββ 1:46 1s/step - loss: 36.5799 - sparse_categorical_accuracy: 0.2188
2/100 [37mββββββββββββββββββββ 1:45 1s/step - loss: 39.4707 - sparse_categorical_accuracy: 0.2422
3/100 [37mββββββββββββββββββββ 1:44 1s/step - loss: 39.7202 - sparse_categorical_accuracy: 0.2622
4/100 [37mββββββββββββββββββββ 1:41 1s/step - loss: 39.6028 - sparse_categorical_accuracy: 0.2826
5/100 β[37mβββββββββββββββββββ 1:39 1s/step - loss: 39.4266 - sparse_categorical_accuracy: 0.2923
6/100 β[37mβββββββββββββββββββ 1:37 1s/step - loss: 39.2664 - sparse_categorical_accuracy: 0.3000
7/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 39.1370 - sparse_categorical_accuracy: 0.3050
8/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 39.0332 - sparse_categorical_accuracy: 0.3064
9/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 38.9412 - sparse_categorical_accuracy: 0.3090
10/100 ββ[37mββββββββββββββββββ 1:33 1s/step - loss: 38.8614 - sparse_categorical_accuracy: 0.3115
11/100 ββ[37mββββββββββββββββββ 1:32 1s/step - loss: 38.7961 - sparse_categorical_accuracy: 0.3127
12/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 38.7323 - sparse_categorical_accuracy: 0.3144
13/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 38.6772 - sparse_categorical_accuracy: 0.3161
14/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 38.6311 - sparse_categorical_accuracy: 0.3166
15/100 βββ[37mβββββββββββββββββ 1:28 1s/step - loss: 38.5887 - sparse_categorical_accuracy: 0.3172
16/100 βββ[37mβββββββββββββββββ 1:27 1s/step - loss: 38.5600 - sparse_categorical_accuracy: 0.3173
17/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 38.5358 - sparse_categorical_accuracy: 0.3172
18/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 38.5143 - sparse_categorical_accuracy: 0.3170
19/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 38.4937 - sparse_categorical_accuracy: 0.3166
20/100 ββββ[37mββββββββββββββββ 1:23 1s/step - loss: 38.4737 - sparse_categorical_accuracy: 0.3164
21/100 ββββ[37mββββββββββββββββ 1:22 1s/step - loss: 38.4543 - sparse_categorical_accuracy: 0.3164
22/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 38.4364 - sparse_categorical_accuracy: 0.3163
23/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 38.4201 - sparse_categorical_accuracy: 0.3161
24/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 38.4052 - sparse_categorical_accuracy: 0.3162
25/100 βββββ[37mβββββββββββββββ 1:17 1s/step - loss: 38.3898 - sparse_categorical_accuracy: 0.3165
26/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 38.3748 - sparse_categorical_accuracy: 0.3167
27/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 38.3601 - sparse_categorical_accuracy: 0.3167
28/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 38.3457 - sparse_categorical_accuracy: 0.3167
29/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 38.3315 - sparse_categorical_accuracy: 0.3168
30/100 ββββββ[37mββββββββββββββ 1:12 1s/step - loss: 38.3167 - sparse_categorical_accuracy: 0.3172
31/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 38.3021 - sparse_categorical_accuracy: 0.3175
32/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 38.2873 - sparse_categorical_accuracy: 0.3179
33/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 38.2722 - sparse_categorical_accuracy: 0.3184
34/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 38.2571 - sparse_categorical_accuracy: 0.3189
35/100 βββββββ[37mβββββββββββββ 1:07 1s/step - loss: 38.2425 - sparse_categorical_accuracy: 0.3193
36/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 38.2277 - sparse_categorical_accuracy: 0.3197
37/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 38.2132 - sparse_categorical_accuracy: 0.3199
38/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 38.1989 - sparse_categorical_accuracy: 0.3201
39/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 38.1846 - sparse_categorical_accuracy: 0.3204
40/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 38.1707 - sparse_categorical_accuracy: 0.3206
41/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 38.1595 - sparse_categorical_accuracy: 0.3209
42/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 38.1484 - sparse_categorical_accuracy: 0.3211
43/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 38.1373 - sparse_categorical_accuracy: 0.3213
44/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 38.1262 - sparse_categorical_accuracy: 0.3214
45/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 38.1152 - sparse_categorical_accuracy: 0.3215
46/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 38.1040 - sparse_categorical_accuracy: 0.3216
47/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 38.0932 - sparse_categorical_accuracy: 0.3216
48/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 38.0824 - sparse_categorical_accuracy: 0.3216
49/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 38.0716 - sparse_categorical_accuracy: 0.3216
50/100 ββββββββββ[37mββββββββββ 51s 1s/step - loss: 38.0609 - sparse_categorical_accuracy: 0.3216
51/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 38.0535 - sparse_categorical_accuracy: 0.3216
52/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 38.0460 - sparse_categorical_accuracy: 0.3217
53/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 38.0384 - sparse_categorical_accuracy: 0.3217
54/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 38.0309 - sparse_categorical_accuracy: 0.3217
55/100 βββββββββββ[37mβββββββββ 46s 1s/step - loss: 38.0235 - sparse_categorical_accuracy: 0.3218
56/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 38.0162 - sparse_categorical_accuracy: 0.3218
57/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 38.0092 - sparse_categorical_accuracy: 0.3217
58/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 38.0029 - sparse_categorical_accuracy: 0.3217
59/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 37.9967 - sparse_categorical_accuracy: 0.3216
60/100 ββββββββββββ[37mββββββββ 41s 1s/step - loss: 37.9907 - sparse_categorical_accuracy: 0.3215
61/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 37.9848 - sparse_categorical_accuracy: 0.3215
62/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 37.9791 - sparse_categorical_accuracy: 0.3214
63/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 37.9734 - sparse_categorical_accuracy: 0.3214
64/100 ββββββββββββ[37mββββββββ 36s 1s/step - loss: 37.9678 - sparse_categorical_accuracy: 0.3213
65/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 37.9623 - sparse_categorical_accuracy: 0.3212
66/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 37.9570 - sparse_categorical_accuracy: 0.3211
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 37.9519 - sparse_categorical_accuracy: 0.3211
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 37.9469 - sparse_categorical_accuracy: 0.3210
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 37.9424 - sparse_categorical_accuracy: 0.3209
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 37.9380 - sparse_categorical_accuracy: 0.3208
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 37.9341 - sparse_categorical_accuracy: 0.3208
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 37.9304 - sparse_categorical_accuracy: 0.3207
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 37.9269 - sparse_categorical_accuracy: 0.3206
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 37.9234 - sparse_categorical_accuracy: 0.3206
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 37.9199 - sparse_categorical_accuracy: 0.3205
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 37.9165 - sparse_categorical_accuracy: 0.3204
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 37.9135 - sparse_categorical_accuracy: 0.3203
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 37.9104 - sparse_categorical_accuracy: 0.3202
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 37.9071 - sparse_categorical_accuracy: 0.3202
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 37.9039 - sparse_categorical_accuracy: 0.3201
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 37.9007 - sparse_categorical_accuracy: 0.3201
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 37.8974 - sparse_categorical_accuracy: 0.3200
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 37.8941 - sparse_categorical_accuracy: 0.3200
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 37.8908 - sparse_categorical_accuracy: 0.3200
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 37.8875 - sparse_categorical_accuracy: 0.3199
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 37.8840 - sparse_categorical_accuracy: 0.3199
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 37.8806 - sparse_categorical_accuracy: 0.3199
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 37.8770 - sparse_categorical_accuracy: 0.3198
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 37.8734 - sparse_categorical_accuracy: 0.3198
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 37.8697 - sparse_categorical_accuracy: 0.3197
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 37.8660 - sparse_categorical_accuracy: 0.3197
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 37.8622 - sparse_categorical_accuracy: 0.3196
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 37.8583 - sparse_categorical_accuracy: 0.3195
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 37.8545 - sparse_categorical_accuracy: 0.3195
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 37.8505 - sparse_categorical_accuracy: 0.3194
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 37.8465 - sparse_categorical_accuracy: 0.3194
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 37.8424 - sparse_categorical_accuracy: 0.3193
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 37.8384 - sparse_categorical_accuracy: 0.3193
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 37.8342 - sparse_categorical_accuracy: 0.3192
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 37.8286 - sparse_categorical_accuracy: 0.3192
100/100 ββββββββββββββββββββ 107s 1s/step - loss: 37.8231 - sparse_categorical_accuracy: 0.3192 - val_loss: 1330149064704.0000 - val_sparse_categorical_accuracy: 0.3367
Epoch 8/20
1/100 [37mββββββββββββββββββββ 1:42 1s/step - loss: 36.6512 - sparse_categorical_accuracy: 0.2500
2/100 [37mββββββββββββββββββββ 1:44 1s/step - loss: 36.6798 - sparse_categorical_accuracy: 0.2734
3/100 [37mββββββββββββββββββββ 1:40 1s/step - loss: 36.6432 - sparse_categorical_accuracy: 0.2899
4/100 [37mββββββββββββββββββββ 1:40 1s/step - loss: 36.5739 - sparse_categorical_accuracy: 0.3132
5/100 β[37mβββββββββββββββββββ 1:39 1s/step - loss: 36.5407 - sparse_categorical_accuracy: 0.3268
6/100 β[37mβββββββββββββββββββ 1:37 1s/step - loss: 36.5485 - sparse_categorical_accuracy: 0.3331
7/100 β[37mβββββββββββββββββββ 1:36 1s/step - loss: 36.5576 - sparse_categorical_accuracy: 0.3371
8/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 36.5698 - sparse_categorical_accuracy: 0.3385
9/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 36.5745 - sparse_categorical_accuracy: 0.3394
10/100 ββ[37mββββββββββββββββββ 1:33 1s/step - loss: 36.5792 - sparse_categorical_accuracy: 0.3389
11/100 ββ[37mββββββββββββββββββ 1:32 1s/step - loss: 36.5810 - sparse_categorical_accuracy: 0.3376
12/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 36.5798 - sparse_categorical_accuracy: 0.3361
13/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 36.5791 - sparse_categorical_accuracy: 0.3352
14/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 36.5762 - sparse_categorical_accuracy: 0.3354
15/100 βββ[37mβββββββββββββββββ 1:28 1s/step - loss: 36.5728 - sparse_categorical_accuracy: 0.3355
16/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 36.5684 - sparse_categorical_accuracy: 0.3359
17/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 36.5666 - sparse_categorical_accuracy: 0.3356
18/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 36.5648 - sparse_categorical_accuracy: 0.3348
19/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 36.5629 - sparse_categorical_accuracy: 0.3337
20/100 ββββ[37mββββββββββββββββ 1:22 1s/step - loss: 36.5608 - sparse_categorical_accuracy: 0.3327
21/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 36.5580 - sparse_categorical_accuracy: 0.3321
22/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 36.5553 - sparse_categorical_accuracy: 0.3314
23/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 36.5536 - sparse_categorical_accuracy: 0.3305
24/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 36.5524 - sparse_categorical_accuracy: 0.3294
25/100 βββββ[37mβββββββββββββββ 1:17 1s/step - loss: 36.5546 - sparse_categorical_accuracy: 0.3286
26/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 36.5562 - sparse_categorical_accuracy: 0.3276
27/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 36.5576 - sparse_categorical_accuracy: 0.3267
28/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 36.5586 - sparse_categorical_accuracy: 0.3258
29/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 36.5592 - sparse_categorical_accuracy: 0.3251
30/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 36.5596 - sparse_categorical_accuracy: 0.3245
31/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 36.5592 - sparse_categorical_accuracy: 0.3241
32/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 36.5586 - sparse_categorical_accuracy: 0.3238
33/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 36.5576 - sparse_categorical_accuracy: 0.3236
34/100 ββββββ[37mββββββββββββββ 1:07 1s/step - loss: 36.5560 - sparse_categorical_accuracy: 0.3234
35/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 36.5542 - sparse_categorical_accuracy: 0.3233
36/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 36.5522 - sparse_categorical_accuracy: 0.3231
37/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 36.5500 - sparse_categorical_accuracy: 0.3231
38/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 36.5481 - sparse_categorical_accuracy: 0.3230
39/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 36.5463 - sparse_categorical_accuracy: 0.3228
40/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 36.5443 - sparse_categorical_accuracy: 0.3227
41/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 36.5423 - sparse_categorical_accuracy: 0.3225
42/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 36.5402 - sparse_categorical_accuracy: 0.3223
43/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 36.5381 - sparse_categorical_accuracy: 0.3220
44/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 36.5362 - sparse_categorical_accuracy: 0.3218
45/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 36.5354 - sparse_categorical_accuracy: 0.3215
46/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 36.5343 - sparse_categorical_accuracy: 0.3212
47/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 36.5330 - sparse_categorical_accuracy: 0.3209
48/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 36.5316 - sparse_categorical_accuracy: 0.3207
49/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 36.5302 - sparse_categorical_accuracy: 0.3205
50/100 ββββββββββ[37mββββββββββ 51s 1s/step - loss: 36.5287 - sparse_categorical_accuracy: 0.3204
51/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 36.5272 - sparse_categorical_accuracy: 0.3203
52/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 36.5257 - sparse_categorical_accuracy: 0.3202
53/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 36.5242 - sparse_categorical_accuracy: 0.3201
54/100 ββββββββββ[37mββββββββββ 46s 1s/step - loss: 36.5229 - sparse_categorical_accuracy: 0.3200
55/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 36.5216 - sparse_categorical_accuracy: 0.3199
56/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 36.5203 - sparse_categorical_accuracy: 0.3197
57/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 36.5188 - sparse_categorical_accuracy: 0.3196
58/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 36.5173 - sparse_categorical_accuracy: 0.3195
59/100 βββββββββββ[37mβββββββββ 41s 1s/step - loss: 36.5157 - sparse_categorical_accuracy: 0.3194
60/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 36.5140 - sparse_categorical_accuracy: 0.3193
61/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 36.5122 - sparse_categorical_accuracy: 0.3192
62/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 36.5105 - sparse_categorical_accuracy: 0.3192
63/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 36.5086 - sparse_categorical_accuracy: 0.3191
64/100 ββββββββββββ[37mββββββββ 36s 1s/step - loss: 36.5067 - sparse_categorical_accuracy: 0.3191
65/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 36.5048 - sparse_categorical_accuracy: 0.3191
66/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 36.5030 - sparse_categorical_accuracy: 0.3191
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 36.5011 - sparse_categorical_accuracy: 0.3191
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 36.4993 - sparse_categorical_accuracy: 0.3191
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 36.4974 - sparse_categorical_accuracy: 0.3191
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 36.4955 - sparse_categorical_accuracy: 0.3192
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 36.4937 - sparse_categorical_accuracy: 0.3192
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 36.4919 - sparse_categorical_accuracy: 0.3193
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 36.4902 - sparse_categorical_accuracy: 0.3194
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 36.4886 - sparse_categorical_accuracy: 0.3194
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 36.4871 - sparse_categorical_accuracy: 0.3194
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 36.4858 - sparse_categorical_accuracy: 0.3194
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 36.4845 - sparse_categorical_accuracy: 0.3195
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 36.4834 - sparse_categorical_accuracy: 0.3195
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 36.4824 - sparse_categorical_accuracy: 0.3195
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 36.4813 - sparse_categorical_accuracy: 0.3195
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 36.4804 - sparse_categorical_accuracy: 0.3195
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 36.4794 - sparse_categorical_accuracy: 0.3195
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 36.4785 - sparse_categorical_accuracy: 0.3195
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 36.4776 - sparse_categorical_accuracy: 0.3195
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 36.4767 - sparse_categorical_accuracy: 0.3196
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 36.4759 - sparse_categorical_accuracy: 0.3196
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 36.4750 - sparse_categorical_accuracy: 0.3196
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 36.4742 - sparse_categorical_accuracy: 0.3196
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 36.4735 - sparse_categorical_accuracy: 0.3196
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 36.4727 - sparse_categorical_accuracy: 0.3197
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 36.4719 - sparse_categorical_accuracy: 0.3197
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 36.4711 - sparse_categorical_accuracy: 0.3197
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 36.4702 - sparse_categorical_accuracy: 0.3198
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 36.4693 - sparse_categorical_accuracy: 0.3198
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 36.4686 - sparse_categorical_accuracy: 0.3198
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 36.4678 - sparse_categorical_accuracy: 0.3198
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 36.4670 - sparse_categorical_accuracy: 0.3198
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 36.4663 - sparse_categorical_accuracy: 0.3198
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 36.4656 - sparse_categorical_accuracy: 0.3198
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 36.4633 - sparse_categorical_accuracy: 0.3198
100/100 ββββββββββββββββββββ 107s 1s/step - loss: 36.4611 - sparse_categorical_accuracy: 0.3198 - val_loss: 55461990629376.0000 - val_sparse_categorical_accuracy: 0.3805
Epoch 9/20
1/100 [37mββββββββββββββββββββ 1:48 1s/step - loss: 36.1902 - sparse_categorical_accuracy: 0.4062
2/100 [37mββββββββββββββββββββ 1:42 1s/step - loss: 36.1628 - sparse_categorical_accuracy: 0.3594
3/100 [37mββββββββββββββββββββ 1:42 1s/step - loss: 36.1877 - sparse_categorical_accuracy: 0.3438
4/100 [37mββββββββββββββββββββ 1:40 1s/step - loss: 36.2174 - sparse_categorical_accuracy: 0.3320
5/100 β[37mβββββββββββββββββββ 1:38 1s/step - loss: 36.2312 - sparse_categorical_accuracy: 0.3294
6/100 β[37mβββββββββββββββββββ 1:37 1s/step - loss: 36.2290 - sparse_categorical_accuracy: 0.3309
7/100 β[37mβββββββββββββββββββ 1:36 1s/step - loss: 36.2177 - sparse_categorical_accuracy: 0.3321
8/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 36.2049 - sparse_categorical_accuracy: 0.3331
9/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 36.2052 - sparse_categorical_accuracy: 0.3319
10/100 ββ[37mββββββββββββββββββ 1:32 1s/step - loss: 36.2082 - sparse_categorical_accuracy: 0.3309
11/100 ββ[37mββββββββββββββββββ 1:32 1s/step - loss: 36.2106 - sparse_categorical_accuracy: 0.3298
12/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 36.2138 - sparse_categorical_accuracy: 0.3292
13/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 36.2142 - sparse_categorical_accuracy: 0.3288
14/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 36.2186 - sparse_categorical_accuracy: 0.3282
15/100 βββ[37mβββββββββββββββββ 1:27 1s/step - loss: 36.2206 - sparse_categorical_accuracy: 0.3278
16/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 36.2294 - sparse_categorical_accuracy: 0.3283
17/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 36.2382 - sparse_categorical_accuracy: 0.3287
18/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 36.2450 - sparse_categorical_accuracy: 0.3294
19/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 36.2496 - sparse_categorical_accuracy: 0.3303
20/100 ββββ[37mββββββββββββββββ 1:22 1s/step - loss: 36.2549 - sparse_categorical_accuracy: 0.3309
21/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 36.2586 - sparse_categorical_accuracy: 0.3315
22/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 36.2609 - sparse_categorical_accuracy: 0.3324
23/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 36.2630 - sparse_categorical_accuracy: 0.3330
24/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 36.2647 - sparse_categorical_accuracy: 0.3333
25/100 βββββ[37mβββββββββββββββ 1:17 1s/step - loss: 36.2664 - sparse_categorical_accuracy: 0.3339
26/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 36.2682 - sparse_categorical_accuracy: 0.3343
27/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 36.2697 - sparse_categorical_accuracy: 0.3344
28/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 36.2714 - sparse_categorical_accuracy: 0.3345
29/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 36.2728 - sparse_categorical_accuracy: 0.3344
30/100 ββββββ[37mββββββββββββββ 1:12 1s/step - loss: 36.2743 - sparse_categorical_accuracy: 0.3343
31/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 36.2755 - sparse_categorical_accuracy: 0.3340
32/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 36.2773 - sparse_categorical_accuracy: 0.3338
33/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 36.2785 - sparse_categorical_accuracy: 0.3337
34/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 36.2792 - sparse_categorical_accuracy: 0.3336
35/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 36.2797 - sparse_categorical_accuracy: 0.3336
36/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 36.2802 - sparse_categorical_accuracy: 0.3336
37/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 36.2807 - sparse_categorical_accuracy: 0.3336
38/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 36.2810 - sparse_categorical_accuracy: 0.3336
39/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 36.2810 - sparse_categorical_accuracy: 0.3336
40/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 36.2809 - sparse_categorical_accuracy: 0.3336
41/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 36.2809 - sparse_categorical_accuracy: 0.3336
42/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 36.2820 - sparse_categorical_accuracy: 0.3336
43/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 36.2831 - sparse_categorical_accuracy: 0.3337
44/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 36.2839 - sparse_categorical_accuracy: 0.3337
45/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 36.2848 - sparse_categorical_accuracy: 0.3337
46/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 36.2857 - sparse_categorical_accuracy: 0.3336
47/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 36.2874 - sparse_categorical_accuracy: 0.3335
48/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 36.2893 - sparse_categorical_accuracy: 0.3335
49/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 36.2912 - sparse_categorical_accuracy: 0.3334
50/100 ββββββββββ[37mββββββββββ 51s 1s/step - loss: 36.2930 - sparse_categorical_accuracy: 0.3333
51/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 36.2946 - sparse_categorical_accuracy: 0.3334
52/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 36.2961 - sparse_categorical_accuracy: 0.3334
53/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 36.2975 - sparse_categorical_accuracy: 0.3334
54/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 36.2989 - sparse_categorical_accuracy: 0.3334
55/100 βββββββββββ[37mβββββββββ 46s 1s/step - loss: 36.3000 - sparse_categorical_accuracy: 0.3335
56/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 36.3012 - sparse_categorical_accuracy: 0.3336
57/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 36.3021 - sparse_categorical_accuracy: 0.3336
58/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 36.3031 - sparse_categorical_accuracy: 0.3336
59/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 36.3040 - sparse_categorical_accuracy: 0.3336
60/100 ββββββββββββ[37mββββββββ 41s 1s/step - loss: 36.3048 - sparse_categorical_accuracy: 0.3336
61/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 36.3055 - sparse_categorical_accuracy: 0.3336
62/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 36.3060 - sparse_categorical_accuracy: 0.3336
63/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 36.3065 - sparse_categorical_accuracy: 0.3337
64/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 36.3070 - sparse_categorical_accuracy: 0.3337
65/100 βββββββββββββ[37mβββββββ 36s 1s/step - loss: 36.3075 - sparse_categorical_accuracy: 0.3338
66/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 36.3080 - sparse_categorical_accuracy: 0.3338
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 36.3088 - sparse_categorical_accuracy: 0.3338
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 36.3095 - sparse_categorical_accuracy: 0.3339
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 36.3101 - sparse_categorical_accuracy: 0.3339
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 36.3108 - sparse_categorical_accuracy: 0.3340
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 36.3115 - sparse_categorical_accuracy: 0.3341
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 36.3121 - sparse_categorical_accuracy: 0.3342
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 36.3127 - sparse_categorical_accuracy: 0.3342
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 36.3133 - sparse_categorical_accuracy: 0.3343
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 36.3142 - sparse_categorical_accuracy: 0.3344
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 36.3150 - sparse_categorical_accuracy: 0.3345
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 36.3158 - sparse_categorical_accuracy: 0.3345
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 36.3166 - sparse_categorical_accuracy: 0.3346
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 36.3174 - sparse_categorical_accuracy: 0.3347
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 36.3180 - sparse_categorical_accuracy: 0.3348
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 36.3186 - sparse_categorical_accuracy: 0.3350
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 36.3191 - sparse_categorical_accuracy: 0.3352
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 36.3194 - sparse_categorical_accuracy: 0.3353
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 36.3198 - sparse_categorical_accuracy: 0.3355
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 36.3201 - sparse_categorical_accuracy: 0.3357
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 36.3204 - sparse_categorical_accuracy: 0.3358
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 36.3207 - sparse_categorical_accuracy: 0.3359
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 36.3210 - sparse_categorical_accuracy: 0.3360
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 36.3215 - sparse_categorical_accuracy: 0.3361
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 36.3218 - sparse_categorical_accuracy: 0.3362
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 36.3222 - sparse_categorical_accuracy: 0.3363
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 36.3225 - sparse_categorical_accuracy: 0.3364
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 36.3228 - sparse_categorical_accuracy: 0.3365
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 36.3230 - sparse_categorical_accuracy: 0.3365
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 36.3232 - sparse_categorical_accuracy: 0.3366
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 36.3234 - sparse_categorical_accuracy: 0.3367
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 36.3235 - sparse_categorical_accuracy: 0.3368
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 36.3236 - sparse_categorical_accuracy: 0.3368
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 36.3236 - sparse_categorical_accuracy: 0.3369
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 36.3222 - sparse_categorical_accuracy: 0.3370
100/100 ββββββββββββββββββββ 107s 1s/step - loss: 36.3207 - sparse_categorical_accuracy: 0.3371 - val_loss: 79361986265088.0000 - val_sparse_categorical_accuracy: 0.3680
Epoch 10/20
1/100 [37mββββββββββββββββββββ 58:50 36s/step - loss: 36.7173 - sparse_categorical_accuracy: 0.4062
2/100 [37mββββββββββββββββββββ 1:42 1s/step - loss: 36.4852 - sparse_categorical_accuracy: 0.3906
3/100 [37mββββββββββββββββββββ 1:38 1s/step - loss: 36.3769 - sparse_categorical_accuracy: 0.3819
4/100 [37mββββββββββββββββββββ 1:38 1s/step - loss: 36.3024 - sparse_categorical_accuracy: 0.3822
5/100 β[37mβββββββββββββββββββ 1:36 1s/step - loss: 36.2685 - sparse_categorical_accuracy: 0.3845
6/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 36.2423 - sparse_categorical_accuracy: 0.3855
7/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 36.2239 - sparse_categorical_accuracy: 0.3840
8/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 36.2047 - sparse_categorical_accuracy: 0.3843
9/100 β[37mβββββββββββββββββββ 1:32 1s/step - loss: 36.1833 - sparse_categorical_accuracy: 0.3837
10/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 36.1658 - sparse_categorical_accuracy: 0.3825
11/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 36.1490 - sparse_categorical_accuracy: 0.3816
12/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 36.1342 - sparse_categorical_accuracy: 0.3804
13/100 ββ[37mββββββββββββββββββ 1:27 1s/step - loss: 36.1258 - sparse_categorical_accuracy: 0.3792
14/100 ββ[37mββββββββββββββββββ 1:26 1s/step - loss: 36.1192 - sparse_categorical_accuracy: 0.3783
15/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 36.1131 - sparse_categorical_accuracy: 0.3771
16/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 36.1093 - sparse_categorical_accuracy: 0.3756
17/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 36.1054 - sparse_categorical_accuracy: 0.3740
18/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 36.1022 - sparse_categorical_accuracy: 0.3727
19/100 βββ[37mβββββββββββββββββ 1:22 1s/step - loss: 36.1001 - sparse_categorical_accuracy: 0.3713
20/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 36.0968 - sparse_categorical_accuracy: 0.3706
21/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 36.0938 - sparse_categorical_accuracy: 0.3700
22/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 36.0911 - sparse_categorical_accuracy: 0.3692
23/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 36.0882 - sparse_categorical_accuracy: 0.3684
24/100 ββββ[37mββββββββββββββββ 1:16 1s/step - loss: 36.0863 - sparse_categorical_accuracy: 0.3673
25/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 36.0843 - sparse_categorical_accuracy: 0.3664
26/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 36.0827 - sparse_categorical_accuracy: 0.3657
27/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 36.0816 - sparse_categorical_accuracy: 0.3648
28/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 36.0803 - sparse_categorical_accuracy: 0.3640
29/100 βββββ[37mβββββββββββββββ 1:11 1s/step - loss: 36.0787 - sparse_categorical_accuracy: 0.3633
30/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 36.0772 - sparse_categorical_accuracy: 0.3627
31/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 36.0758 - sparse_categorical_accuracy: 0.3622
32/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 36.0746 - sparse_categorical_accuracy: 0.3617
33/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 36.0738 - sparse_categorical_accuracy: 0.3611
34/100 ββββββ[37mββββββββββββββ 1:06 1s/step - loss: 36.0728 - sparse_categorical_accuracy: 0.3605
35/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 36.0722 - sparse_categorical_accuracy: 0.3600
36/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 36.0717 - sparse_categorical_accuracy: 0.3595
37/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 36.0716 - sparse_categorical_accuracy: 0.3590
38/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 36.0718 - sparse_categorical_accuracy: 0.3585
39/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 36.0723 - sparse_categorical_accuracy: 0.3580
40/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 36.0727 - sparse_categorical_accuracy: 0.3574
41/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 36.0730 - sparse_categorical_accuracy: 0.3568
42/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 36.0735 - sparse_categorical_accuracy: 0.3562
43/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 36.0742 - sparse_categorical_accuracy: 0.3557
44/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 36.0748 - sparse_categorical_accuracy: 0.3552
45/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 36.0752 - sparse_categorical_accuracy: 0.3548
46/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 36.0757 - sparse_categorical_accuracy: 0.3544
47/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 36.0761 - sparse_categorical_accuracy: 0.3540
48/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 36.0769 - sparse_categorical_accuracy: 0.3536
49/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 36.0776 - sparse_categorical_accuracy: 0.3532
50/100 ββββββββββ[37mββββββββββ 51s 1s/step - loss: 36.0782 - sparse_categorical_accuracy: 0.3529
51/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 36.0788 - sparse_categorical_accuracy: 0.3527
52/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 36.0793 - sparse_categorical_accuracy: 0.3525
53/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 36.0799 - sparse_categorical_accuracy: 0.3523
54/100 ββββββββββ[37mββββββββββ 46s 1s/step - loss: 36.0804 - sparse_categorical_accuracy: 0.3521
55/100 βββββββββββ[37mβββββββββ 46s 1s/step - loss: 36.0808 - sparse_categorical_accuracy: 0.3520
56/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 36.0812 - sparse_categorical_accuracy: 0.3519
57/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 36.0816 - sparse_categorical_accuracy: 0.3518
58/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 36.0819 - sparse_categorical_accuracy: 0.3517
59/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 36.0821 - sparse_categorical_accuracy: 0.3516
60/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 36.0823 - sparse_categorical_accuracy: 0.3515
61/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 36.0826 - sparse_categorical_accuracy: 0.3514
62/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 36.0829 - sparse_categorical_accuracy: 0.3513
63/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 36.0832 - sparse_categorical_accuracy: 0.3512
64/100 ββββββββββββ[37mββββββββ 36s 1s/step - loss: 36.0835 - sparse_categorical_accuracy: 0.3511
65/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 36.0838 - sparse_categorical_accuracy: 0.3510
66/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 36.0841 - sparse_categorical_accuracy: 0.3508
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 36.0846 - sparse_categorical_accuracy: 0.3507
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 36.0851 - sparse_categorical_accuracy: 0.3505
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 36.0856 - sparse_categorical_accuracy: 0.3503
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 36.0861 - sparse_categorical_accuracy: 0.3501
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 36.0867 - sparse_categorical_accuracy: 0.3499
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 36.0872 - sparse_categorical_accuracy: 0.3497
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 36.0878 - sparse_categorical_accuracy: 0.3495
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 36.0883 - sparse_categorical_accuracy: 0.3494
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 36.0888 - sparse_categorical_accuracy: 0.3492
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 36.0894 - sparse_categorical_accuracy: 0.3490
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 36.0899 - sparse_categorical_accuracy: 0.3488
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 36.0903 - sparse_categorical_accuracy: 0.3487
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 36.0906 - sparse_categorical_accuracy: 0.3485
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 36.0911 - sparse_categorical_accuracy: 0.3484
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 36.0914 - sparse_categorical_accuracy: 0.3483
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 36.0917 - sparse_categorical_accuracy: 0.3482
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 36.0920 - sparse_categorical_accuracy: 0.3481
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 36.0922 - sparse_categorical_accuracy: 0.3480
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 36.0925 - sparse_categorical_accuracy: 0.3479
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 36.0928 - sparse_categorical_accuracy: 0.3478
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 36.0930 - sparse_categorical_accuracy: 0.3478
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 36.0932 - sparse_categorical_accuracy: 0.3477
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 36.0935 - sparse_categorical_accuracy: 0.3476
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 36.0937 - sparse_categorical_accuracy: 0.3476
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 36.0939 - sparse_categorical_accuracy: 0.3476
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 36.0941 - sparse_categorical_accuracy: 0.3475
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 36.0943 - sparse_categorical_accuracy: 0.3475
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 36.0944 - sparse_categorical_accuracy: 0.3475
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 36.0947 - sparse_categorical_accuracy: 0.3474
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 36.0950 - sparse_categorical_accuracy: 0.3474
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 36.0955 - sparse_categorical_accuracy: 0.3474
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 36.0961 - sparse_categorical_accuracy: 0.3474
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 36.0966 - sparse_categorical_accuracy: 0.3475
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 36.0956 - sparse_categorical_accuracy: 0.3475
100/100 ββββββββββββββββββββ 142s 1s/step - loss: 36.0947 - sparse_categorical_accuracy: 0.3475 - val_loss: 14927241216.0000 - val_sparse_categorical_accuracy: 0.3054
Epoch 11/20
1/100 [37mββββββββββββββββββββ 58:42 36s/step - loss: 36.1768 - sparse_categorical_accuracy: 0.3438
2/100 [37mββββββββββββββββββββ 1:38 1s/step - loss: 36.3035 - sparse_categorical_accuracy: 0.3125
3/100 [37mββββββββββββββββββββ 1:39 1s/step - loss: 36.3690 - sparse_categorical_accuracy: 0.3090
4/100 [37mββββββββββββββββββββ 1:39 1s/step - loss: 36.4012 - sparse_categorical_accuracy: 0.3138
5/100 β[37mβββββββββββββββββββ 1:37 1s/step - loss: 36.4168 - sparse_categorical_accuracy: 0.3198
6/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 36.4449 - sparse_categorical_accuracy: 0.3247
7/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 36.4684 - sparse_categorical_accuracy: 0.3287
8/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 36.4986 - sparse_categorical_accuracy: 0.3305
9/100 β[37mβββββββββββββββββββ 1:31 1s/step - loss: 36.5271 - sparse_categorical_accuracy: 0.3328
10/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 36.5636 - sparse_categorical_accuracy: 0.3336
11/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 36.6122 - sparse_categorical_accuracy: 0.3342
12/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 36.6884 - sparse_categorical_accuracy: 0.3348
13/100 ββ[37mββββββββββββββββββ 1:27 1s/step - loss: 36.7833 - sparse_categorical_accuracy: 0.3353
14/100 ββ[37mββββββββββββββββββ 1:26 1s/step - loss: 36.8994 - sparse_categorical_accuracy: 0.3350
15/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 37.0178 - sparse_categorical_accuracy: 0.3349
16/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 37.1292 - sparse_categorical_accuracy: 0.3337
17/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 37.2272 - sparse_categorical_accuracy: 0.3332
18/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 37.3126 - sparse_categorical_accuracy: 0.3323
19/100 βββ[37mβββββββββββββββββ 1:22 1s/step - loss: 37.3916 - sparse_categorical_accuracy: 0.3314
20/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 37.4582 - sparse_categorical_accuracy: 0.3308
21/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 37.5152 - sparse_categorical_accuracy: 0.3302
22/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 37.5639 - sparse_categorical_accuracy: 0.3298
23/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 37.6056 - sparse_categorical_accuracy: 0.3292
24/100 ββββ[37mββββββββββββββββ 1:17 1s/step - loss: 37.6425 - sparse_categorical_accuracy: 0.3286
25/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 37.6735 - sparse_categorical_accuracy: 0.3283
26/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 37.6993 - sparse_categorical_accuracy: 0.3281
27/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 37.7214 - sparse_categorical_accuracy: 0.3280
28/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 37.7406 - sparse_categorical_accuracy: 0.3277
29/100 βββββ[37mβββββββββββββββ 1:12 1s/step - loss: 37.7565 - sparse_categorical_accuracy: 0.3274
30/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 37.7714 - sparse_categorical_accuracy: 0.3272
31/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 37.7842 - sparse_categorical_accuracy: 0.3268
32/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 37.7953 - sparse_categorical_accuracy: 0.3264
33/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 37.8040 - sparse_categorical_accuracy: 0.3260
34/100 ββββββ[37mββββββββββββββ 1:07 1s/step - loss: 37.8219 - sparse_categorical_accuracy: 0.3258
35/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 37.8379 - sparse_categorical_accuracy: 0.3256
36/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 37.8525 - sparse_categorical_accuracy: 0.3254
37/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 37.8659 - sparse_categorical_accuracy: 0.3253
38/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 37.8796 - sparse_categorical_accuracy: 0.3250
39/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 37.8931 - sparse_categorical_accuracy: 0.3247
40/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 37.9096 - sparse_categorical_accuracy: 0.3244
41/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 37.9253 - sparse_categorical_accuracy: 0.3241
42/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 37.9405 - sparse_categorical_accuracy: 0.3238
43/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 37.9553 - sparse_categorical_accuracy: 0.3236
44/100 ββββββββ[37mββββββββββββ 56s 1s/step - loss: 37.9707 - sparse_categorical_accuracy: 0.3235
45/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 37.9869 - sparse_categorical_accuracy: 0.3232
46/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 38.0034 - sparse_categorical_accuracy: 0.3231
47/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 38.0206 - sparse_categorical_accuracy: 0.3229
48/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 38.0382 - sparse_categorical_accuracy: 0.3227
49/100 βββββββββ[37mβββββββββββ 51s 1s/step - loss: 38.0558 - sparse_categorical_accuracy: 0.3226
50/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 38.0737 - sparse_categorical_accuracy: 0.3224
51/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 38.0920 - sparse_categorical_accuracy: 0.3222
52/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 38.1100 - sparse_categorical_accuracy: 0.3221
53/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 38.1299 - sparse_categorical_accuracy: 0.3220
54/100 ββββββββββ[37mββββββββββ 46s 1s/step - loss: 38.1498 - sparse_categorical_accuracy: 0.3220
55/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 38.1689 - sparse_categorical_accuracy: 0.3219
56/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 38.1871 - sparse_categorical_accuracy: 0.3218
57/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 38.2045 - sparse_categorical_accuracy: 0.3217
58/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 38.2213 - sparse_categorical_accuracy: 0.3216
59/100 βββββββββββ[37mβββββββββ 41s 1s/step - loss: 38.2376 - sparse_categorical_accuracy: 0.3215
60/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 38.2533 - sparse_categorical_accuracy: 0.3214
61/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 38.2683 - sparse_categorical_accuracy: 0.3213
62/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 38.2826 - sparse_categorical_accuracy: 0.3213
63/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 38.2961 - sparse_categorical_accuracy: 0.3212
64/100 ββββββββββββ[37mββββββββ 36s 1s/step - loss: 38.3092 - sparse_categorical_accuracy: 0.3211
65/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 38.3217 - sparse_categorical_accuracy: 0.3210
66/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 38.3339 - sparse_categorical_accuracy: 0.3209
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 38.3452 - sparse_categorical_accuracy: 0.3208
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 38.3558 - sparse_categorical_accuracy: 0.3208
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 38.3657 - sparse_categorical_accuracy: 0.3207
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 38.3748 - sparse_categorical_accuracy: 0.3207
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 38.3835 - sparse_categorical_accuracy: 0.3206
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 38.3918 - sparse_categorical_accuracy: 0.3205
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 38.3994 - sparse_categorical_accuracy: 0.3204
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 38.4065 - sparse_categorical_accuracy: 0.3203
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 38.4139 - sparse_categorical_accuracy: 0.3202
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 38.4209 - sparse_categorical_accuracy: 0.3200
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 38.4286 - sparse_categorical_accuracy: 0.3199
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 38.4358 - sparse_categorical_accuracy: 0.3198
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 38.4423 - sparse_categorical_accuracy: 0.3197
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 38.4483 - sparse_categorical_accuracy: 0.3196
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 38.4539 - sparse_categorical_accuracy: 0.3196
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 38.4589 - sparse_categorical_accuracy: 0.3195
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 38.4636 - sparse_categorical_accuracy: 0.3195
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 38.4679 - sparse_categorical_accuracy: 0.3194
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 38.4719 - sparse_categorical_accuracy: 0.3194
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 38.4755 - sparse_categorical_accuracy: 0.3193
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 38.4788 - sparse_categorical_accuracy: 0.3193
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 38.4819 - sparse_categorical_accuracy: 0.3192
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 38.4846 - sparse_categorical_accuracy: 0.3191
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 38.4870 - sparse_categorical_accuracy: 0.3191
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 38.4891 - sparse_categorical_accuracy: 0.3190
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 38.4916 - sparse_categorical_accuracy: 0.3190
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 38.4937 - sparse_categorical_accuracy: 0.3189
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 38.4957 - sparse_categorical_accuracy: 0.3189
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 38.4974 - sparse_categorical_accuracy: 0.3188
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 38.4990 - sparse_categorical_accuracy: 0.3188
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 38.5005 - sparse_categorical_accuracy: 0.3188
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 38.5019 - sparse_categorical_accuracy: 0.3188
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 38.5032 - sparse_categorical_accuracy: 0.3187
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 38.5028 - sparse_categorical_accuracy: 0.3187
100/100 ββββββββββββββββββββ 141s 1s/step - loss: 38.5024 - sparse_categorical_accuracy: 0.3187 - val_loss: 1930753792.0000 - val_sparse_categorical_accuracy: 0.2315
Epoch 12/20
1/100 [37mββββββββββββββββββββ 1:00:07 36s/step - loss: 42.1152 - sparse_categorical_accuracy: 0.3750
2/100 [37mββββββββββββββββββββ 1:38 1s/step - loss: 40.9939 - sparse_categorical_accuracy: 0.3359
3/100 [37mββββββββββββββββββββ 1:36 997ms/step - loss: 40.3854 - sparse_categorical_accuracy: 0.3212
4/100 [37mββββββββββββββββββββ 1:36 1s/step - loss: 40.0082 - sparse_categorical_accuracy: 0.3151
5/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 39.7856 - sparse_categorical_accuracy: 0.3121
6/100 β[37mβββββββββββββββββββ 1:33 1000ms/step - loss: 39.6142 - sparse_categorical_accuracy: 0.3078
7/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 39.4890 - sparse_categorical_accuracy: 0.3072
8/100 β[37mβββββββββββββββββββ 1:31 1000ms/step - loss: 39.3828 - sparse_categorical_accuracy: 0.3059
9/100 β[37mβββββββββββββββββββ 1:31 1s/step - loss: 39.2872 - sparse_categorical_accuracy: 0.3032
10/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 39.1979 - sparse_categorical_accuracy: 0.3025
11/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 39.1176 - sparse_categorical_accuracy: 0.3022
12/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 39.0417 - sparse_categorical_accuracy: 0.3026
13/100 ββ[37mββββββββββββββββββ 1:27 1s/step - loss: 38.9724 - sparse_categorical_accuracy: 0.3032
14/100 ββ[37mββββββββββββββββββ 1:26 1s/step - loss: 38.9077 - sparse_categorical_accuracy: 0.3041
15/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 38.8489 - sparse_categorical_accuracy: 0.3044
16/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 38.7940 - sparse_categorical_accuracy: 0.3044
17/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 38.7408 - sparse_categorical_accuracy: 0.3048
18/100 βββ[37mβββββββββββββββββ 1:22 1s/step - loss: 38.6905 - sparse_categorical_accuracy: 0.3049
19/100 βββ[37mβββββββββββββββββ 1:22 1s/step - loss: 38.6466 - sparse_categorical_accuracy: 0.3050
20/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 38.6091 - sparse_categorical_accuracy: 0.3051
21/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 38.5744 - sparse_categorical_accuracy: 0.3053
22/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 38.5416 - sparse_categorical_accuracy: 0.3052
23/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 38.5095 - sparse_categorical_accuracy: 0.3049
24/100 ββββ[37mββββββββββββββββ 1:17 1s/step - loss: 38.4786 - sparse_categorical_accuracy: 0.3046
25/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 38.4478 - sparse_categorical_accuracy: 0.3044
26/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 38.4185 - sparse_categorical_accuracy: 0.3044
27/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 38.3905 - sparse_categorical_accuracy: 0.3044
28/100 βββββ[37mβββββββββββββββ 1:12 1s/step - loss: 38.3624 - sparse_categorical_accuracy: 0.3047
29/100 βββββ[37mβββββββββββββββ 1:11 1s/step - loss: 38.3360 - sparse_categorical_accuracy: 0.3051
30/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 38.3099 - sparse_categorical_accuracy: 0.3056
31/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 38.2850 - sparse_categorical_accuracy: 0.3060
32/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 38.2604 - sparse_categorical_accuracy: 0.3064
33/100 ββββββ[37mββββββββββββββ 1:07 1s/step - loss: 38.2364 - sparse_categorical_accuracy: 0.3069
34/100 ββββββ[37mββββββββββββββ 1:06 1s/step - loss: 38.2127 - sparse_categorical_accuracy: 0.3075
35/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 38.1893 - sparse_categorical_accuracy: 0.3082
36/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 38.1665 - sparse_categorical_accuracy: 0.3089
37/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 38.1445 - sparse_categorical_accuracy: 0.3094
38/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 38.1229 - sparse_categorical_accuracy: 0.3100
39/100 βββββββ[37mβββββββββββββ 1:01 1s/step - loss: 38.1031 - sparse_categorical_accuracy: 0.3107
40/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 38.0841 - sparse_categorical_accuracy: 0.3113
41/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 38.0655 - sparse_categorical_accuracy: 0.3119
42/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 38.0472 - sparse_categorical_accuracy: 0.3125
43/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 38.0293 - sparse_categorical_accuracy: 0.3130
44/100 ββββββββ[37mββββββββββββ 56s 1s/step - loss: 38.0117 - sparse_categorical_accuracy: 0.3136
45/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 37.9946 - sparse_categorical_accuracy: 0.3140
46/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 37.9778 - sparse_categorical_accuracy: 0.3144
47/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 37.9615 - sparse_categorical_accuracy: 0.3149
48/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 37.9455 - sparse_categorical_accuracy: 0.3153
49/100 βββββββββ[37mβββββββββββ 51s 1s/step - loss: 37.9298 - sparse_categorical_accuracy: 0.3156
50/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 37.9144 - sparse_categorical_accuracy: 0.3160
51/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 37.8994 - sparse_categorical_accuracy: 0.3163
52/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 37.8846 - sparse_categorical_accuracy: 0.3167
53/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 37.8702 - sparse_categorical_accuracy: 0.3171
54/100 ββββββββββ[37mββββββββββ 46s 1s/step - loss: 37.8563 - sparse_categorical_accuracy: 0.3174
55/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 37.8424 - sparse_categorical_accuracy: 0.3178
56/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 37.8294 - sparse_categorical_accuracy: 0.3181
57/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 37.8166 - sparse_categorical_accuracy: 0.3184
58/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 37.8041 - sparse_categorical_accuracy: 0.3186
59/100 βββββββββββ[37mβββββββββ 41s 1s/step - loss: 37.7917 - sparse_categorical_accuracy: 0.3189
60/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 37.7796 - sparse_categorical_accuracy: 0.3192
61/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 37.7678 - sparse_categorical_accuracy: 0.3194
62/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 37.7561 - sparse_categorical_accuracy: 0.3196
63/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 37.7444 - sparse_categorical_accuracy: 0.3198
64/100 ββββββββββββ[37mββββββββ 36s 1s/step - loss: 37.7330 - sparse_categorical_accuracy: 0.3200
65/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 37.7218 - sparse_categorical_accuracy: 0.3202
66/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 37.7106 - sparse_categorical_accuracy: 0.3204
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 37.6996 - sparse_categorical_accuracy: 0.3205
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 37.6887 - sparse_categorical_accuracy: 0.3207
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 37.6780 - sparse_categorical_accuracy: 0.3209
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 37.6676 - sparse_categorical_accuracy: 0.3210
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 37.6572 - sparse_categorical_accuracy: 0.3212
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 37.6470 - sparse_categorical_accuracy: 0.3213
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 37.6370 - sparse_categorical_accuracy: 0.3215
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 37.6272 - sparse_categorical_accuracy: 0.3216
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 37.6175 - sparse_categorical_accuracy: 0.3218
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 37.6079 - sparse_categorical_accuracy: 0.3219
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 37.5986 - sparse_categorical_accuracy: 0.3221
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 37.5894 - sparse_categorical_accuracy: 0.3222
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 37.5804 - sparse_categorical_accuracy: 0.3223
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 37.5721 - sparse_categorical_accuracy: 0.3224
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 37.5639 - sparse_categorical_accuracy: 0.3226
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 37.5557 - sparse_categorical_accuracy: 0.3227
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 37.5477 - sparse_categorical_accuracy: 0.3229
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 37.5400 - sparse_categorical_accuracy: 0.3230
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 37.5324 - sparse_categorical_accuracy: 0.3232
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 37.5249 - sparse_categorical_accuracy: 0.3233
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 37.5174 - sparse_categorical_accuracy: 0.3235
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 37.5100 - sparse_categorical_accuracy: 0.3237
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 37.5027 - sparse_categorical_accuracy: 0.3238
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 37.4956 - sparse_categorical_accuracy: 0.3240
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 37.4886 - sparse_categorical_accuracy: 0.3241
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 37.4816 - sparse_categorical_accuracy: 0.3243
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 37.4747 - sparse_categorical_accuracy: 0.3244
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 37.4679 - sparse_categorical_accuracy: 0.3246
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 37.4613 - sparse_categorical_accuracy: 0.3247
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 37.4547 - sparse_categorical_accuracy: 0.3249
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 37.4482 - sparse_categorical_accuracy: 0.3250
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 37.4417 - sparse_categorical_accuracy: 0.3252
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 37.4353 - sparse_categorical_accuracy: 0.3253
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 37.4279 - sparse_categorical_accuracy: 0.3255
100/100 ββββββββββββββββββββ 142s 1s/step - loss: 37.4206 - sparse_categorical_accuracy: 0.3256 - val_loss: 1793616557963500563988480.0000 - val_sparse_categorical_accuracy: 0.2328
Epoch 13/20
1/100 [37mββββββββββββββββββββ 59:52 36s/step - loss: 43.0665 - sparse_categorical_accuracy: 0.1875
2/100 [37mββββββββββββββββββββ 1:41 1s/step - loss: 41.4007 - sparse_categorical_accuracy: 0.2344
3/100 [37mββββββββββββββββββββ 1:38 1s/step - loss: 40.5478 - sparse_categorical_accuracy: 0.2361
4/100 [37mββββββββββββββββββββ 1:37 1s/step - loss: 39.9836 - sparse_categorical_accuracy: 0.2513
5/100 β[37mβββββββββββββββββββ 1:37 1s/step - loss: 39.6005 - sparse_categorical_accuracy: 0.2623
6/100 β[37mβββββββββββββββββββ 1:37 1s/step - loss: 39.4050 - sparse_categorical_accuracy: 0.2663
7/100 β[37mβββββββββββββββββββ 1:36 1s/step - loss: 39.2307 - sparse_categorical_accuracy: 0.2659
8/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 39.0731 - sparse_categorical_accuracy: 0.2688
9/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 38.9341 - sparse_categorical_accuracy: 0.2721
10/100 ββ[37mββββββββββββββββββ 1:32 1s/step - loss: 38.8113 - sparse_categorical_accuracy: 0.2768
11/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 38.7010 - sparse_categorical_accuracy: 0.2811
12/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 38.6074 - sparse_categorical_accuracy: 0.2837
13/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 38.5211 - sparse_categorical_accuracy: 0.2853
14/100 ββ[37mββββββββββββββββββ 1:27 1s/step - loss: 38.4446 - sparse_categorical_accuracy: 0.2863
15/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 38.3741 - sparse_categorical_accuracy: 0.2876
16/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 38.3085 - sparse_categorical_accuracy: 0.2893
17/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 38.2497 - sparse_categorical_accuracy: 0.2910
18/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 38.1954 - sparse_categorical_accuracy: 0.2925
19/100 βββ[37mβββββββββββββββββ 1:22 1s/step - loss: 38.1438 - sparse_categorical_accuracy: 0.2942
20/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 38.0973 - sparse_categorical_accuracy: 0.2962
21/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 38.0548 - sparse_categorical_accuracy: 0.2978
22/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 38.0137 - sparse_categorical_accuracy: 0.2996
23/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 37.9745 - sparse_categorical_accuracy: 0.3013
24/100 ββββ[37mββββββββββββββββ 1:17 1s/step - loss: 37.9374 - sparse_categorical_accuracy: 0.3029
25/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 37.9020 - sparse_categorical_accuracy: 0.3044
26/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 37.8688 - sparse_categorical_accuracy: 0.3058
27/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 37.8374 - sparse_categorical_accuracy: 0.3069
28/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 37.8071 - sparse_categorical_accuracy: 0.3081
29/100 βββββ[37mβββββββββββββββ 1:12 1s/step - loss: 37.7780 - sparse_categorical_accuracy: 0.3092
30/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 37.7549 - sparse_categorical_accuracy: 0.3103
31/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 37.7322 - sparse_categorical_accuracy: 0.3112
32/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 37.7103 - sparse_categorical_accuracy: 0.3122
33/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 37.6895 - sparse_categorical_accuracy: 0.3130
34/100 ββββββ[37mββββββββββββββ 1:07 1s/step - loss: 37.6693 - sparse_categorical_accuracy: 0.3139
35/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 37.6500 - sparse_categorical_accuracy: 0.3147
36/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 37.6313 - sparse_categorical_accuracy: 0.3155
37/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 37.6136 - sparse_categorical_accuracy: 0.3163
38/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 37.5964 - sparse_categorical_accuracy: 0.3170
39/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 37.5801 - sparse_categorical_accuracy: 0.3176
40/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 37.5643 - sparse_categorical_accuracy: 0.3182
41/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 37.5490 - sparse_categorical_accuracy: 0.3187
42/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 37.5343 - sparse_categorical_accuracy: 0.3192
43/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 37.5202 - sparse_categorical_accuracy: 0.3197
44/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 37.5065 - sparse_categorical_accuracy: 0.3202
45/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 37.4937 - sparse_categorical_accuracy: 0.3207
46/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 37.4820 - sparse_categorical_accuracy: 0.3210
47/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 37.4705 - sparse_categorical_accuracy: 0.3213
48/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 37.4600 - sparse_categorical_accuracy: 0.3216
49/100 βββββββββ[37mβββββββββββ 51s 1s/step - loss: 37.4499 - sparse_categorical_accuracy: 0.3220
50/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 37.4459 - sparse_categorical_accuracy: 0.3223
51/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 37.4418 - sparse_categorical_accuracy: 0.3226
52/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 37.4394 - sparse_categorical_accuracy: 0.3229
53/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 37.4379 - sparse_categorical_accuracy: 0.3231
54/100 ββββββββββ[37mββββββββββ 46s 1s/step - loss: 37.4367 - sparse_categorical_accuracy: 0.3233
55/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 37.4355 - sparse_categorical_accuracy: 0.3234
56/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 37.4344 - sparse_categorical_accuracy: 0.3236
57/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 37.4333 - sparse_categorical_accuracy: 0.3237
58/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 37.4332 - sparse_categorical_accuracy: 0.3239
59/100 βββββββββββ[37mβββββββββ 41s 1s/step - loss: 37.4330 - sparse_categorical_accuracy: 0.3240
60/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 37.4355 - sparse_categorical_accuracy: 0.3242
61/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 37.4376 - sparse_categorical_accuracy: 0.3243
62/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 37.4397 - sparse_categorical_accuracy: 0.3244
63/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 37.4570 - sparse_categorical_accuracy: 0.3245
64/100 ββββββββββββ[37mββββββββ 36s 1s/step - loss: 37.4780 - sparse_categorical_accuracy: 0.3246
65/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 37.4992 - sparse_categorical_accuracy: 0.3246
66/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 37.5211 - sparse_categorical_accuracy: 0.3247
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 37.5453 - sparse_categorical_accuracy: 0.3248
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 37.6848 - sparse_categorical_accuracy: 0.3249
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 37.8449 - sparse_categorical_accuracy: 0.3250
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 38.0000 - sparse_categorical_accuracy: 0.3250
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 38.1557 - sparse_categorical_accuracy: 0.3251
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 38.5126 - sparse_categorical_accuracy: 0.3250
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 39.0564 - sparse_categorical_accuracy: 0.3250
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 39.5901 - sparse_categorical_accuracy: 0.3249
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 40.1041 - sparse_categorical_accuracy: 0.3249
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 40.6028 - sparse_categorical_accuracy: 0.3248
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 41.1546 - sparse_categorical_accuracy: 0.3247
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 41.7197 - sparse_categorical_accuracy: 0.3246
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 42.2922 - sparse_categorical_accuracy: 0.3245
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 42.8838 - sparse_categorical_accuracy: 0.3244
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 43.4631 - sparse_categorical_accuracy: 0.3243
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 44.0304 - sparse_categorical_accuracy: 0.3242
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 44.8038 - sparse_categorical_accuracy: 0.3241
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 45.5640 - sparse_categorical_accuracy: 0.3240
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 46.2985 - sparse_categorical_accuracy: 0.3240
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 47.0196 - sparse_categorical_accuracy: 0.3239
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 47.7189 - sparse_categorical_accuracy: 0.3238
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 48.3950 - sparse_categorical_accuracy: 0.3237
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 49.0544 - sparse_categorical_accuracy: 0.3236
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 49.6933 - sparse_categorical_accuracy: 0.3235
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 50.3141 - sparse_categorical_accuracy: 0.3234
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 51.0231 - sparse_categorical_accuracy: 0.3234
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 51.7102 - sparse_categorical_accuracy: 0.3233
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 52.3764 - sparse_categorical_accuracy: 0.3232
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 53.0224 - sparse_categorical_accuracy: 0.3231
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 53.6491 - sparse_categorical_accuracy: 0.3230
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 54.2575 - sparse_categorical_accuracy: 0.3230
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 54.8483 - sparse_categorical_accuracy: 0.3229
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 55.4269 - sparse_categorical_accuracy: 0.3228
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 55.9873 - sparse_categorical_accuracy: 0.3227
100/100 ββββββββββββββββββββ 142s 1s/step - loss: 56.5366 - sparse_categorical_accuracy: 0.3226 - val_loss: 505209651200.0000 - val_sparse_categorical_accuracy: 0.2528
Epoch 14/20
1/100 [37mββββββββββββββββββββ 1:46 1s/step - loss: 72.5004 - sparse_categorical_accuracy: 0.2812
2/100 [37mββββββββββββββββββββ 1:37 992ms/step - loss: 84.3191 - sparse_categorical_accuracy: 0.2891
3/100 [37mββββββββββββββββββββ 1:36 995ms/step - loss: 86.3062 - sparse_categorical_accuracy: 0.2865
4/100 [37mββββββββββββββββββββ 1:36 1s/step - loss: 102.5759 - sparse_categorical_accuracy: 0.2891
5/100 β[37mβββββββββββββββββββ 1:36 1s/step - loss: 111.2810 - sparse_categorical_accuracy: 0.2925
6/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 116.4263 - sparse_categorical_accuracy: 0.2950
7/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 120.4184 - sparse_categorical_accuracy: 0.2949
8/100 β[37mβββββββββββββββββββ 1:32 1s/step - loss: 122.9799 - sparse_categorical_accuracy: 0.2976
9/100 β[37mβββββββββββββββββββ 1:32 1s/step - loss: 123.9803 - sparse_categorical_accuracy: 0.2985
10/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 124.1441 - sparse_categorical_accuracy: 0.2996
11/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 123.8266 - sparse_categorical_accuracy: 0.2997
12/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 148.8502 - sparse_categorical_accuracy: 0.2999
13/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 167.8486 - sparse_categorical_accuracy: 0.3009
14/100 ββ[37mββββββββββββββββββ 1:27 1s/step - loss: 182.3929 - sparse_categorical_accuracy: 0.3014
15/100 βββ[37mβββββββββββββββββ 1:27 1s/step - loss: 193.6643 - sparse_categorical_accuracy: 0.3017
16/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 202.4236 - sparse_categorical_accuracy: 0.3023
17/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 209.2320 - sparse_categorical_accuracy: 0.3023
18/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 215.1761 - sparse_categorical_accuracy: 0.3022
19/100 βββ[37mβββββββββββββββββ 1:22 1s/step - loss: 219.8418 - sparse_categorical_accuracy: 0.3026
20/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 241.0950 - sparse_categorical_accuracy: 0.3032
21/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 262.8609 - sparse_categorical_accuracy: 0.3038
22/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 281.3412 - sparse_categorical_accuracy: 0.3045
23/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 297.2592 - sparse_categorical_accuracy: 0.3051
24/100 ββββ[37mββββββββββββββββ 1:17 1s/step - loss: 310.9528 - sparse_categorical_accuracy: 0.3058
25/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 322.7583 - sparse_categorical_accuracy: 0.3064
26/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 333.3093 - sparse_categorical_accuracy: 0.3068
27/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 346.8104 - sparse_categorical_accuracy: 0.3072
28/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 358.5458 - sparse_categorical_accuracy: 0.3073
29/100 βββββ[37mβββββββββββββββ 1:12 1s/step - loss: 368.7500 - sparse_categorical_accuracy: 0.3072
30/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 378.8999 - sparse_categorical_accuracy: 0.3072
31/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 388.4263 - sparse_categorical_accuracy: 0.3071
32/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 396.7980 - sparse_categorical_accuracy: 0.3070
33/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 404.4334 - sparse_categorical_accuracy: 0.3069
34/100 ββββββ[37mββββββββββββββ 1:07 1s/step - loss: 411.2321 - sparse_categorical_accuracy: 0.3070
35/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 417.2190 - sparse_categorical_accuracy: 0.3070
36/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 422.5132 - sparse_categorical_accuracy: 0.3070
37/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 427.1383 - sparse_categorical_accuracy: 0.3070
38/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 431.2506 - sparse_categorical_accuracy: 0.3070
39/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 434.8232 - sparse_categorical_accuracy: 0.3070
40/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 437.9098 - sparse_categorical_accuracy: 0.3068
41/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 440.6833 - sparse_categorical_accuracy: 0.3066
42/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 443.0559 - sparse_categorical_accuracy: 0.3064
43/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 445.1284 - sparse_categorical_accuracy: 0.3063
44/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 446.8688 - sparse_categorical_accuracy: 0.3062
45/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 448.4276 - sparse_categorical_accuracy: 0.3060
46/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 449.8117 - sparse_categorical_accuracy: 0.3059
47/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 450.9800 - sparse_categorical_accuracy: 0.3058
48/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 451.9573 - sparse_categorical_accuracy: 0.3058
49/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 452.7186 - sparse_categorical_accuracy: 0.3058
50/100 ββββββββββ[37mββββββββββ 51s 1s/step - loss: 453.3130 - sparse_categorical_accuracy: 0.3058
51/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 453.7388 - sparse_categorical_accuracy: 0.3057
52/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 454.0486 - sparse_categorical_accuracy: 0.3056
53/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 454.2064 - sparse_categorical_accuracy: 0.3055
54/100 ββββββββββ[37mββββββββββ 46s 1s/step - loss: 454.2328 - sparse_categorical_accuracy: 0.3053
55/100 βββββββββββ[37mβββββββββ 46s 1s/step - loss: 454.1332 - sparse_categorical_accuracy: 0.3052
56/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 453.9173 - sparse_categorical_accuracy: 0.3050
57/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 453.5970 - sparse_categorical_accuracy: 0.3048
58/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 453.1803 - sparse_categorical_accuracy: 0.3046
59/100 βββββββββββ[37mβββββββββ 41s 1s/step - loss: 452.6779 - sparse_categorical_accuracy: 0.3044
60/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 452.0964 - sparse_categorical_accuracy: 0.3042
61/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 451.4410 - sparse_categorical_accuracy: 0.3040
62/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 450.7515 - sparse_categorical_accuracy: 0.3038
63/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 449.9997 - sparse_categorical_accuracy: 0.3036
64/100 ββββββββββββ[37mββββββββ 36s 1s/step - loss: 449.1942 - sparse_categorical_accuracy: 0.3034
65/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 448.3498 - sparse_categorical_accuracy: 0.3032
66/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 447.4845 - sparse_categorical_accuracy: 0.3030
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 446.5741 - sparse_categorical_accuracy: 0.3028
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 445.6242 - sparse_categorical_accuracy: 0.3026
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 444.6494 - sparse_categorical_accuracy: 0.3024
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 443.6421 - sparse_categorical_accuracy: 0.3022
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 442.6296 - sparse_categorical_accuracy: 0.3020
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 441.5871 - sparse_categorical_accuracy: 0.3019
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 440.5179 - sparse_categorical_accuracy: 0.3017
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 439.4271 - sparse_categorical_accuracy: 0.3016
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 438.3216 - sparse_categorical_accuracy: 0.3014
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 437.1978 - sparse_categorical_accuracy: 0.3013
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 436.0553 - sparse_categorical_accuracy: 0.3012
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 434.9005 - sparse_categorical_accuracy: 0.3011
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 433.7516 - sparse_categorical_accuracy: 0.3010
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 432.6144 - sparse_categorical_accuracy: 0.3010
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 431.4657 - sparse_categorical_accuracy: 0.3010
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 430.3048 - sparse_categorical_accuracy: 0.3009
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 429.1349 - sparse_categorical_accuracy: 0.3009
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 427.9555 - sparse_categorical_accuracy: 0.3009
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 426.7693 - sparse_categorical_accuracy: 0.3009
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 425.5820 - sparse_categorical_accuracy: 0.3009
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 424.3880 - sparse_categorical_accuracy: 0.3009
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 423.1917 - sparse_categorical_accuracy: 0.3009
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 421.9930 - sparse_categorical_accuracy: 0.3009
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 420.7901 - sparse_categorical_accuracy: 0.3008
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 419.5866 - sparse_categorical_accuracy: 0.3008
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 418.3845 - sparse_categorical_accuracy: 0.3008
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 417.1804 - sparse_categorical_accuracy: 0.3008
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 415.9749 - sparse_categorical_accuracy: 0.3008
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 414.7687 - sparse_categorical_accuracy: 0.3008
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 413.5732 - sparse_categorical_accuracy: 0.3007
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 412.3854 - sparse_categorical_accuracy: 0.3007
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 411.1977 - sparse_categorical_accuracy: 0.3007
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 410.0114 - sparse_categorical_accuracy: 0.3007
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 408.8264 - sparse_categorical_accuracy: 0.3007
100/100 ββββββββββββββββββββ 107s 1s/step - loss: 407.6649 - sparse_categorical_accuracy: 0.3007 - val_loss: 35970580884750336.0000 - val_sparse_categorical_accuracy: 0.3392
Epoch 15/20
1/100 [37mββββββββββββββββββββ 1:41 1s/step - loss: 67.1360 - sparse_categorical_accuracy: 0.1875
2/100 [37mββββββββββββββββββββ 1:37 999ms/step - loss: 67.1150 - sparse_categorical_accuracy: 0.2500
3/100 [37mββββββββββββββββββββ 1:37 1s/step - loss: 72.1596 - sparse_categorical_accuracy: 0.2743
4/100 [37mββββββββββββββββββββ 1:36 1s/step - loss: 73.8228 - sparse_categorical_accuracy: 0.2741
5/100 β[37mβββββββββββββββββββ 1:36 1s/step - loss: 74.3511 - sparse_categorical_accuracy: 0.2730
6/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 75.8008 - sparse_categorical_accuracy: 0.2779
7/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 76.9862 - sparse_categorical_accuracy: 0.2841
8/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 77.6230 - sparse_categorical_accuracy: 0.2891
9/100 β[37mβββββββββββββββββββ 1:32 1s/step - loss: 78.0145 - sparse_categorical_accuracy: 0.2932
10/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 78.4696 - sparse_categorical_accuracy: 0.2986
11/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 78.7647 - sparse_categorical_accuracy: 0.3035
12/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 78.8917 - sparse_categorical_accuracy: 0.3075
13/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 79.0025 - sparse_categorical_accuracy: 0.3108
14/100 ββ[37mββββββββββββββββββ 1:27 1s/step - loss: 79.0261 - sparse_categorical_accuracy: 0.3135
15/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 79.1682 - sparse_categorical_accuracy: 0.3158
16/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 79.2325 - sparse_categorical_accuracy: 0.3180
17/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 79.3086 - sparse_categorical_accuracy: 0.3197
18/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 79.3264 - sparse_categorical_accuracy: 0.3212
19/100 βββ[37mβββββββββββββββββ 1:22 1s/step - loss: 79.3429 - sparse_categorical_accuracy: 0.3225
20/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 79.3826 - sparse_categorical_accuracy: 0.3232
21/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 79.3818 - sparse_categorical_accuracy: 0.3240
22/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 79.3914 - sparse_categorical_accuracy: 0.3247
23/100 ββββ[37mββββββββββββββββ 1:17 1s/step - loss: 79.3727 - sparse_categorical_accuracy: 0.3256
24/100 ββββ[37mββββββββββββββββ 1:16 1s/step - loss: 79.3307 - sparse_categorical_accuracy: 0.3264
25/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 79.2707 - sparse_categorical_accuracy: 0.3271
26/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 79.1959 - sparse_categorical_accuracy: 0.3279
27/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 79.1077 - sparse_categorical_accuracy: 0.3288
28/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 79.0754 - sparse_categorical_accuracy: 0.3295
29/100 βββββ[37mβββββββββββββββ 1:12 1s/step - loss: 79.0420 - sparse_categorical_accuracy: 0.3301
30/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 78.9981 - sparse_categorical_accuracy: 0.3305
31/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 78.9976 - sparse_categorical_accuracy: 0.3310
32/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 78.9829 - sparse_categorical_accuracy: 0.3315
33/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 78.9716 - sparse_categorical_accuracy: 0.3319
34/100 ββββββ[37mββββββββββββββ 1:07 1s/step - loss: 78.9489 - sparse_categorical_accuracy: 0.3325
35/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 78.9179 - sparse_categorical_accuracy: 0.3330
36/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 78.8956 - sparse_categorical_accuracy: 0.3335
37/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 78.8663 - sparse_categorical_accuracy: 0.3339
38/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 78.8289 - sparse_categorical_accuracy: 0.3342
39/100 βββββββ[37mβββββββββββββ 1:01 1s/step - loss: 78.7841 - sparse_categorical_accuracy: 0.3344
40/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 78.7402 - sparse_categorical_accuracy: 0.3346
41/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 78.6895 - sparse_categorical_accuracy: 0.3348
42/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 78.6423 - sparse_categorical_accuracy: 0.3351
43/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 78.6159 - sparse_categorical_accuracy: 0.3354
44/100 ββββββββ[37mββββββββββββ 56s 1s/step - loss: 78.5880 - sparse_categorical_accuracy: 0.3356
45/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 78.5554 - sparse_categorical_accuracy: 0.3359
46/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 78.5176 - sparse_categorical_accuracy: 0.3362
47/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 78.5012 - sparse_categorical_accuracy: 0.3364
48/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 78.4792 - sparse_categorical_accuracy: 0.3367
49/100 βββββββββ[37mβββββββββββ 51s 1s/step - loss: 78.4721 - sparse_categorical_accuracy: 0.3370
50/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 78.4589 - sparse_categorical_accuracy: 0.3373
51/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 78.4406 - sparse_categorical_accuracy: 0.3375
52/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 78.4466 - sparse_categorical_accuracy: 0.3378
53/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 78.4569 - sparse_categorical_accuracy: 0.3381
54/100 ββββββββββ[37mββββββββββ 46s 1s/step - loss: 78.4790 - sparse_categorical_accuracy: 0.3384
55/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 78.4997 - sparse_categorical_accuracy: 0.3386
56/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 78.5142 - sparse_categorical_accuracy: 0.3388
57/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 78.5305 - sparse_categorical_accuracy: 0.3390
58/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 78.5410 - sparse_categorical_accuracy: 0.3391
59/100 βββββββββββ[37mβββββββββ 41s 1s/step - loss: 78.5479 - sparse_categorical_accuracy: 0.3392
60/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 78.5502 - sparse_categorical_accuracy: 0.3392
61/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 78.5480 - sparse_categorical_accuracy: 0.3393
62/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 78.5418 - sparse_categorical_accuracy: 0.3392
63/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 78.5315 - sparse_categorical_accuracy: 0.3391
64/100 ββββββββββββ[37mββββββββ 36s 1s/step - loss: 78.5173 - sparse_categorical_accuracy: 0.3390
65/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 78.5009 - sparse_categorical_accuracy: 0.3389
66/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 78.4822 - sparse_categorical_accuracy: 0.3389
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 78.4737 - sparse_categorical_accuracy: 0.3388
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 78.4618 - sparse_categorical_accuracy: 0.3388
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 78.4472 - sparse_categorical_accuracy: 0.3387
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 78.4297 - sparse_categorical_accuracy: 0.3387
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 78.4095 - sparse_categorical_accuracy: 0.3386
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 78.3903 - sparse_categorical_accuracy: 0.3386
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 78.3707 - sparse_categorical_accuracy: 0.3386
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 78.3488 - sparse_categorical_accuracy: 0.3385
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 78.3245 - sparse_categorical_accuracy: 0.3385
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 78.2985 - sparse_categorical_accuracy: 0.3384
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 78.2730 - sparse_categorical_accuracy: 0.3384
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 78.2458 - sparse_categorical_accuracy: 0.3384
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 78.2171 - sparse_categorical_accuracy: 0.3383
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 78.1887 - sparse_categorical_accuracy: 0.3382
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 78.1586 - sparse_categorical_accuracy: 0.3382
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 78.1290 - sparse_categorical_accuracy: 0.3382
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 78.0979 - sparse_categorical_accuracy: 0.3381
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 78.0656 - sparse_categorical_accuracy: 0.3381
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 78.0319 - sparse_categorical_accuracy: 0.3380
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 77.9983 - sparse_categorical_accuracy: 0.3380
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 77.9636 - sparse_categorical_accuracy: 0.3380
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 77.9280 - sparse_categorical_accuracy: 0.3380
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 77.8915 - sparse_categorical_accuracy: 0.3379
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 77.8541 - sparse_categorical_accuracy: 0.3379
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 77.8170 - sparse_categorical_accuracy: 0.3378
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 77.7791 - sparse_categorical_accuracy: 0.3378
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 77.7424 - sparse_categorical_accuracy: 0.3378
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 77.7098 - sparse_categorical_accuracy: 0.3377
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 77.6769 - sparse_categorical_accuracy: 0.3377
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 77.6433 - sparse_categorical_accuracy: 0.3377
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 77.6111 - sparse_categorical_accuracy: 0.3377
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 77.5781 - sparse_categorical_accuracy: 0.3377
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 77.5445 - sparse_categorical_accuracy: 0.3377
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 77.5074 - sparse_categorical_accuracy: 0.3377
100/100 ββββββββββββββββββββ 106s 1s/step - loss: 77.4712 - sparse_categorical_accuracy: 0.3377 - val_loss: 2983669504.0000 - val_sparse_categorical_accuracy: 0.2966
Epoch 16/20
1/100 [37mββββββββββββββββββββ 1:38 992ms/step - loss: 59.8730 - sparse_categorical_accuracy: 0.2188
2/100 [37mββββββββββββββββββββ 1:44 1s/step - loss: 59.6142 - sparse_categorical_accuracy: 0.2734
3/100 [37mββββββββββββββββββββ 1:43 1s/step - loss: 59.5408 - sparse_categorical_accuracy: 0.2865
4/100 [37mββββββββββββββββββββ 1:40 1s/step - loss: 60.5291 - sparse_categorical_accuracy: 0.2930
5/100 β[37mβββββββββββββββββββ 1:38 1s/step - loss: 60.9421 - sparse_categorical_accuracy: 0.3006
6/100 β[37mβββββββββββββββββββ 1:36 1s/step - loss: 61.1234 - sparse_categorical_accuracy: 0.3052
7/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 61.9223 - sparse_categorical_accuracy: 0.3094
8/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 62.3840 - sparse_categorical_accuracy: 0.3137
9/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 62.6786 - sparse_categorical_accuracy: 0.3155
10/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 62.8811 - sparse_categorical_accuracy: 0.3171
11/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 63.0504 - sparse_categorical_accuracy: 0.3175
12/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 63.1466 - sparse_categorical_accuracy: 0.3179
13/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 63.1934 - sparse_categorical_accuracy: 0.3182
14/100 ββ[37mββββββββββββββββββ 1:27 1s/step - loss: 63.2089 - sparse_categorical_accuracy: 0.3186
15/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 63.2054 - sparse_categorical_accuracy: 0.3189
16/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 63.3949 - sparse_categorical_accuracy: 0.3190
17/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 63.6763 - sparse_categorical_accuracy: 0.3192
18/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 63.9220 - sparse_categorical_accuracy: 0.3192
19/100 βββ[37mβββββββββββββββββ 1:22 1s/step - loss: 64.1147 - sparse_categorical_accuracy: 0.3192
20/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 64.2688 - sparse_categorical_accuracy: 0.3191
21/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 64.3975 - sparse_categorical_accuracy: 0.3190
22/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 64.5064 - sparse_categorical_accuracy: 0.3191
23/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 64.5882 - sparse_categorical_accuracy: 0.3188
24/100 ββββ[37mββββββββββββββββ 1:17 1s/step - loss: 64.6458 - sparse_categorical_accuracy: 0.3186
25/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 64.6847 - sparse_categorical_accuracy: 0.3183
26/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 64.7102 - sparse_categorical_accuracy: 0.3180
27/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 64.7238 - sparse_categorical_accuracy: 0.3176
28/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 64.7253 - sparse_categorical_accuracy: 0.3172
29/100 βββββ[37mβββββββββββββββ 1:12 1s/step - loss: 64.7203 - sparse_categorical_accuracy: 0.3167
30/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 64.7130 - sparse_categorical_accuracy: 0.3163
31/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 64.8311 - sparse_categorical_accuracy: 0.3157
32/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 64.9315 - sparse_categorical_accuracy: 0.3152
33/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 65.0175 - sparse_categorical_accuracy: 0.3150
34/100 ββββββ[37mββββββββββββββ 1:07 1s/step - loss: 65.1062 - sparse_categorical_accuracy: 0.3148
35/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 65.2656 - sparse_categorical_accuracy: 0.3147
36/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 65.4292 - sparse_categorical_accuracy: 0.3146
37/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 65.5736 - sparse_categorical_accuracy: 0.3146
38/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 65.7009 - sparse_categorical_accuracy: 0.3146
39/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 65.8135 - sparse_categorical_accuracy: 0.3146
40/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 65.9128 - sparse_categorical_accuracy: 0.3145
41/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 66.0006 - sparse_categorical_accuracy: 0.3145
42/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 66.0767 - sparse_categorical_accuracy: 0.3144
43/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 66.1421 - sparse_categorical_accuracy: 0.3143
44/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 66.1978 - sparse_categorical_accuracy: 0.3143
45/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 66.2447 - sparse_categorical_accuracy: 0.3142
46/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 66.2840 - sparse_categorical_accuracy: 0.3142
47/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 66.3271 - sparse_categorical_accuracy: 0.3142
48/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 66.3801 - sparse_categorical_accuracy: 0.3143
49/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 66.4257 - sparse_categorical_accuracy: 0.3144
50/100 ββββββββββ[37mββββββββββ 51s 1s/step - loss: 66.4652 - sparse_categorical_accuracy: 0.3144
51/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 66.4984 - sparse_categorical_accuracy: 0.3144
52/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 66.5277 - sparse_categorical_accuracy: 0.3144
53/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 66.5540 - sparse_categorical_accuracy: 0.3144
54/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 66.5844 - sparse_categorical_accuracy: 0.3144
55/100 βββββββββββ[37mβββββββββ 46s 1s/step - loss: 66.6358 - sparse_categorical_accuracy: 0.3144
56/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 66.6834 - sparse_categorical_accuracy: 0.3144
57/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 66.7256 - sparse_categorical_accuracy: 0.3144
58/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 66.7642 - sparse_categorical_accuracy: 0.3144
59/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 66.7980 - sparse_categorical_accuracy: 0.3145
60/100 ββββββββββββ[37mββββββββ 41s 1s/step - loss: 66.8283 - sparse_categorical_accuracy: 0.3145
61/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 66.8676 - sparse_categorical_accuracy: 0.3145
62/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 66.9055 - sparse_categorical_accuracy: 0.3145
63/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 66.9389 - sparse_categorical_accuracy: 0.3145
64/100 ββββββββββββ[37mββββββββ 36s 1s/step - loss: 66.9682 - sparse_categorical_accuracy: 0.3146
65/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 67.0068 - sparse_categorical_accuracy: 0.3147
66/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 67.0413 - sparse_categorical_accuracy: 0.3147
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 67.0722 - sparse_categorical_accuracy: 0.3148
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 67.0993 - sparse_categorical_accuracy: 0.3149
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 67.1250 - sparse_categorical_accuracy: 0.3150
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 67.1480 - sparse_categorical_accuracy: 0.3150
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 67.1680 - sparse_categorical_accuracy: 0.3151
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 67.1852 - sparse_categorical_accuracy: 0.3152
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 67.2117 - sparse_categorical_accuracy: 0.3154
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 67.2353 - sparse_categorical_accuracy: 0.3155
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 67.2570 - sparse_categorical_accuracy: 0.3156
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 67.2819 - sparse_categorical_accuracy: 0.3157
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 67.3040 - sparse_categorical_accuracy: 0.3158
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 67.3234 - sparse_categorical_accuracy: 0.3159
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 67.3401 - sparse_categorical_accuracy: 0.3160
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 67.3545 - sparse_categorical_accuracy: 0.3161
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 67.3668 - sparse_categorical_accuracy: 0.3162
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 67.3805 - sparse_categorical_accuracy: 0.3164
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 67.3918 - sparse_categorical_accuracy: 0.3165
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 67.4010 - sparse_categorical_accuracy: 0.3166
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 67.4103 - sparse_categorical_accuracy: 0.3168
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 67.4179 - sparse_categorical_accuracy: 0.3169
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 67.4237 - sparse_categorical_accuracy: 0.3171
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 67.4318 - sparse_categorical_accuracy: 0.3172
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 67.4379 - sparse_categorical_accuracy: 0.3174
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 67.4424 - sparse_categorical_accuracy: 0.3175
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 67.4458 - sparse_categorical_accuracy: 0.3176
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 67.4481 - sparse_categorical_accuracy: 0.3178
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 67.4508 - sparse_categorical_accuracy: 0.3179
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 67.4519 - sparse_categorical_accuracy: 0.3180
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 67.4519 - sparse_categorical_accuracy: 0.3181
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 67.4504 - sparse_categorical_accuracy: 0.3182
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 67.4478 - sparse_categorical_accuracy: 0.3184
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 67.4438 - sparse_categorical_accuracy: 0.3185
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 67.4389 - sparse_categorical_accuracy: 0.3186
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 67.4304 - sparse_categorical_accuracy: 0.3187
100/100 ββββββββββββββββββββ 107s 1s/step - loss: 67.4222 - sparse_categorical_accuracy: 0.3189 - val_loss: 37.0687 - val_sparse_categorical_accuracy: 0.1477
Epoch 17/20
1/100 [37mββββββββββββββββββββ 58:50 36s/step - loss: 54.1712 - sparse_categorical_accuracy: 0.5312
2/100 [37mββββββββββββββββββββ 1:37 996ms/step - loss: 54.1433 - sparse_categorical_accuracy: 0.4844
3/100 [37mββββββββββββββββββββ 1:39 1s/step - loss: 54.2923 - sparse_categorical_accuracy: 0.4583
4/100 [37mββββββββββββββββββββ 1:37 1s/step - loss: 54.3945 - sparse_categorical_accuracy: 0.4395
5/100 β[37mβββββββββββββββββββ 1:38 1s/step - loss: 54.4431 - sparse_categorical_accuracy: 0.4228
6/100 β[37mβββββββββββββββββββ 1:36 1s/step - loss: 54.4496 - sparse_categorical_accuracy: 0.4122
7/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 54.4618 - sparse_categorical_accuracy: 0.4031
8/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 54.4794 - sparse_categorical_accuracy: 0.3937
9/100 β[37mβββββββββββββββββββ 1:32 1s/step - loss: 54.5192 - sparse_categorical_accuracy: 0.3851
10/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 54.5401 - sparse_categorical_accuracy: 0.3766
11/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 54.5954 - sparse_categorical_accuracy: 0.3710
12/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 54.6501 - sparse_categorical_accuracy: 0.3659
13/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 54.7149 - sparse_categorical_accuracy: 0.3622
14/100 ββ[37mββββββββββββββββββ 1:27 1s/step - loss: 54.7656 - sparse_categorical_accuracy: 0.3591
15/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 54.8022 - sparse_categorical_accuracy: 0.3567
16/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 54.8257 - sparse_categorical_accuracy: 0.3542
17/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 54.8423 - sparse_categorical_accuracy: 0.3525
18/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 54.9699 - sparse_categorical_accuracy: 0.3509
19/100 βββ[37mβββββββββββββββββ 1:22 1s/step - loss: 55.0764 - sparse_categorical_accuracy: 0.3496
20/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 55.1662 - sparse_categorical_accuracy: 0.3486
21/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 55.2427 - sparse_categorical_accuracy: 0.3476
22/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 55.3652 - sparse_categorical_accuracy: 0.3469
23/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 55.4674 - sparse_categorical_accuracy: 0.3462
24/100 ββββ[37mββββββββββββββββ 1:17 1s/step - loss: 55.5522 - sparse_categorical_accuracy: 0.3454
25/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 55.6296 - sparse_categorical_accuracy: 0.3448
26/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 55.6969 - sparse_categorical_accuracy: 0.3443
27/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 55.7546 - sparse_categorical_accuracy: 0.3437
28/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 55.8086 - sparse_categorical_accuracy: 0.3432
29/100 βββββ[37mβββββββββββββββ 1:12 1s/step - loss: 55.8801 - sparse_categorical_accuracy: 0.3426
30/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 55.9433 - sparse_categorical_accuracy: 0.3422
31/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 55.9972 - sparse_categorical_accuracy: 0.3418
32/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 56.0430 - sparse_categorical_accuracy: 0.3416
33/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 56.1322 - sparse_categorical_accuracy: 0.3413
34/100 ββββββ[37mββββββββββββββ 1:07 1s/step - loss: 56.2106 - sparse_categorical_accuracy: 0.3411
35/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 56.2797 - sparse_categorical_accuracy: 0.3408
36/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 56.3416 - sparse_categorical_accuracy: 0.3404
37/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 56.4020 - sparse_categorical_accuracy: 0.3399
38/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 56.5119 - sparse_categorical_accuracy: 0.3394
39/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 56.6107 - sparse_categorical_accuracy: 0.3390
40/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 56.7063 - sparse_categorical_accuracy: 0.3387
41/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 56.7925 - sparse_categorical_accuracy: 0.3384
42/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 56.8706 - sparse_categorical_accuracy: 0.3381
43/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 56.9405 - sparse_categorical_accuracy: 0.3377
44/100 ββββββββ[37mββββββββββββ 56s 1s/step - loss: 57.0081 - sparse_categorical_accuracy: 0.3373
45/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 57.0696 - sparse_categorical_accuracy: 0.3369
46/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 57.1252 - sparse_categorical_accuracy: 0.3366
47/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 57.1747 - sparse_categorical_accuracy: 0.3363
48/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 57.2194 - sparse_categorical_accuracy: 0.3360
49/100 βββββββββ[37mβββββββββββ 51s 1s/step - loss: 57.2593 - sparse_categorical_accuracy: 0.3357
50/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 57.2964 - sparse_categorical_accuracy: 0.3355
51/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 57.3293 - sparse_categorical_accuracy: 0.3352
52/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 57.3585 - sparse_categorical_accuracy: 0.3351
53/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 57.3855 - sparse_categorical_accuracy: 0.3348
54/100 ββββββββββ[37mββββββββββ 46s 1s/step - loss: 57.4333 - sparse_categorical_accuracy: 0.3346
55/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 57.4782 - sparse_categorical_accuracy: 0.3343
56/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 57.5188 - sparse_categorical_accuracy: 0.3341
57/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 57.5586 - sparse_categorical_accuracy: 0.3338
58/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 57.5993 - sparse_categorical_accuracy: 0.3335
59/100 βββββββββββ[37mβββββββββ 41s 1s/step - loss: 57.6384 - sparse_categorical_accuracy: 0.3333
60/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 57.6740 - sparse_categorical_accuracy: 0.3331
61/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 57.7064 - sparse_categorical_accuracy: 0.3329
62/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 57.7355 - sparse_categorical_accuracy: 0.3327
63/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 57.7617 - sparse_categorical_accuracy: 0.3325
64/100 ββββββββββββ[37mββββββββ 36s 1s/step - loss: 57.7892 - sparse_categorical_accuracy: 0.3323
65/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 57.8148 - sparse_categorical_accuracy: 0.3321
66/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 57.8380 - sparse_categorical_accuracy: 0.3320
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 57.8589 - sparse_categorical_accuracy: 0.3318
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 57.8776 - sparse_categorical_accuracy: 0.3317
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 57.8941 - sparse_categorical_accuracy: 0.3315
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 57.9087 - sparse_categorical_accuracy: 0.3314
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 57.9215 - sparse_categorical_accuracy: 0.3312
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 57.9324 - sparse_categorical_accuracy: 0.3310
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 57.9434 - sparse_categorical_accuracy: 0.3309
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 57.9529 - sparse_categorical_accuracy: 0.3307
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 57.9608 - sparse_categorical_accuracy: 0.3305
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 57.9671 - sparse_categorical_accuracy: 0.3304
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 57.9843 - sparse_categorical_accuracy: 0.3302
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 57.9998 - sparse_categorical_accuracy: 0.3300
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 58.0135 - sparse_categorical_accuracy: 0.3299
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 58.0259 - sparse_categorical_accuracy: 0.3298
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 58.0429 - sparse_categorical_accuracy: 0.3296
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 58.0585 - sparse_categorical_accuracy: 0.3295
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 58.0728 - sparse_categorical_accuracy: 0.3293
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 58.0856 - sparse_categorical_accuracy: 0.3292
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 58.1039 - sparse_categorical_accuracy: 0.3291
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 58.1206 - sparse_categorical_accuracy: 0.3290
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 58.1372 - sparse_categorical_accuracy: 0.3289
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 58.1528 - sparse_categorical_accuracy: 0.3288
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 58.1669 - sparse_categorical_accuracy: 0.3288
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 58.1796 - sparse_categorical_accuracy: 0.3287
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 58.1911 - sparse_categorical_accuracy: 0.3286
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 58.2014 - sparse_categorical_accuracy: 0.3285
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 58.2118 - sparse_categorical_accuracy: 0.3285
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 58.2212 - sparse_categorical_accuracy: 0.3284
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 58.2345 - sparse_categorical_accuracy: 0.3284
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 58.2465 - sparse_categorical_accuracy: 0.3283
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 58.2574 - sparse_categorical_accuracy: 0.3283
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 58.2673 - sparse_categorical_accuracy: 0.3283
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 58.2759 - sparse_categorical_accuracy: 0.3282
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 58.2815 - sparse_categorical_accuracy: 0.3282
100/100 ββββββββββββββββββββ 141s 1s/step - loss: 58.2869 - sparse_categorical_accuracy: 0.3282 - val_loss: 4191578574815232.0000 - val_sparse_categorical_accuracy: 0.3129
Epoch 18/20
1/100 [37mββββββββββββββββββββ 1:39 1s/step - loss: 51.9365 - sparse_categorical_accuracy: 0.4375
2/100 [37mββββββββββββββββββββ 1:44 1s/step - loss: 57.0536 - sparse_categorical_accuracy: 0.3984
3/100 [37mββββββββββββββββββββ 1:40 1s/step - loss: 57.4789 - sparse_categorical_accuracy: 0.3767
4/100 [37mββββββββββββββββββββ 1:38 1s/step - loss: 57.1816 - sparse_categorical_accuracy: 0.3529
5/100 β[37mβββββββββββββββββββ 1:37 1s/step - loss: 57.1706 - sparse_categorical_accuracy: 0.3435
6/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 57.8198 - sparse_categorical_accuracy: 0.3349
7/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 58.1971 - sparse_categorical_accuracy: 0.3285
8/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 58.3237 - sparse_categorical_accuracy: 0.3236
9/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 58.3409 - sparse_categorical_accuracy: 0.3200
10/100 ββ[37mββββββββββββββββββ 1:32 1s/step - loss: 58.5552 - sparse_categorical_accuracy: 0.3165
11/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 58.6516 - sparse_categorical_accuracy: 0.3143
12/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 58.6702 - sparse_categorical_accuracy: 0.3131
13/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 58.6391 - sparse_categorical_accuracy: 0.3126
14/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 58.6047 - sparse_categorical_accuracy: 0.3125
15/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 58.5388 - sparse_categorical_accuracy: 0.3126
16/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 58.4930 - sparse_categorical_accuracy: 0.3130
17/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 58.5077 - sparse_categorical_accuracy: 0.3135
18/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 58.5053 - sparse_categorical_accuracy: 0.3142
19/100 βββ[37mβββββββββββββββββ 1:22 1s/step - loss: 58.4806 - sparse_categorical_accuracy: 0.3154
20/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 58.4394 - sparse_categorical_accuracy: 0.3170
21/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 58.4049 - sparse_categorical_accuracy: 0.3185
22/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 58.3601 - sparse_categorical_accuracy: 0.3198
23/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 58.3112 - sparse_categorical_accuracy: 0.3208
24/100 ββββ[37mββββββββββββββββ 1:17 1s/step - loss: 58.2546 - sparse_categorical_accuracy: 0.3219
25/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 58.1921 - sparse_categorical_accuracy: 0.3226
26/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 58.1254 - sparse_categorical_accuracy: 0.3234
27/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 58.0712 - sparse_categorical_accuracy: 0.3242
28/100 βββββ[37mβββββββββββββββ 1:12 1s/step - loss: 58.0117 - sparse_categorical_accuracy: 0.3251
29/100 βββββ[37mβββββββββββββββ 1:11 1s/step - loss: 57.9476 - sparse_categorical_accuracy: 0.3258
30/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 57.8802 - sparse_categorical_accuracy: 0.3267
31/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 57.8106 - sparse_categorical_accuracy: 0.3275
32/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 57.7397 - sparse_categorical_accuracy: 0.3282
33/100 ββββββ[37mββββββββββββββ 1:07 1s/step - loss: 57.6674 - sparse_categorical_accuracy: 0.3289
34/100 ββββββ[37mββββββββββββββ 1:06 1s/step - loss: 57.5958 - sparse_categorical_accuracy: 0.3295
35/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 57.5233 - sparse_categorical_accuracy: 0.3300
36/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 57.4506 - sparse_categorical_accuracy: 0.3304
37/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 57.3774 - sparse_categorical_accuracy: 0.3307
38/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 57.3046 - sparse_categorical_accuracy: 0.3310
39/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 57.2337 - sparse_categorical_accuracy: 0.3311
40/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 57.1629 - sparse_categorical_accuracy: 0.3312
41/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 57.0945 - sparse_categorical_accuracy: 0.3312
42/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 57.0267 - sparse_categorical_accuracy: 0.3313
43/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 56.9828 - sparse_categorical_accuracy: 0.3314
44/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 56.9401 - sparse_categorical_accuracy: 0.3315
45/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 56.8960 - sparse_categorical_accuracy: 0.3317
46/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 56.8507 - sparse_categorical_accuracy: 0.3319
47/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 56.8044 - sparse_categorical_accuracy: 0.3322
48/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 56.7577 - sparse_categorical_accuracy: 0.3325
49/100 βββββββββ[37mβββββββββββ 51s 1s/step - loss: 56.7108 - sparse_categorical_accuracy: 0.3327
50/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 56.6634 - sparse_categorical_accuracy: 0.3329
51/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 56.6159 - sparse_categorical_accuracy: 0.3331
52/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 56.5681 - sparse_categorical_accuracy: 0.3332
53/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 56.5206 - sparse_categorical_accuracy: 0.3333
54/100 ββββββββββ[37mββββββββββ 46s 1s/step - loss: 56.4731 - sparse_categorical_accuracy: 0.3333
55/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 56.4286 - sparse_categorical_accuracy: 0.3334
56/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 56.3840 - sparse_categorical_accuracy: 0.3334
57/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 56.3394 - sparse_categorical_accuracy: 0.3334
58/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 56.3065 - sparse_categorical_accuracy: 0.3335
59/100 βββββββββββ[37mβββββββββ 41s 1s/step - loss: 56.2731 - sparse_categorical_accuracy: 0.3336
60/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 56.2395 - sparse_categorical_accuracy: 0.3336
61/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 56.2054 - sparse_categorical_accuracy: 0.3337
62/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 56.1711 - sparse_categorical_accuracy: 0.3338
63/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 56.1365 - sparse_categorical_accuracy: 0.3339
64/100 ββββββββββββ[37mββββββββ 36s 1s/step - loss: 56.1018 - sparse_categorical_accuracy: 0.3339
65/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 56.0668 - sparse_categorical_accuracy: 0.3339
66/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 56.0318 - sparse_categorical_accuracy: 0.3339
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 55.9968 - sparse_categorical_accuracy: 0.3339
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 55.9643 - sparse_categorical_accuracy: 0.3339
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 55.9317 - sparse_categorical_accuracy: 0.3340
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 55.8996 - sparse_categorical_accuracy: 0.3340
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 55.8673 - sparse_categorical_accuracy: 0.3341
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 55.8357 - sparse_categorical_accuracy: 0.3342
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 55.8041 - sparse_categorical_accuracy: 0.3343
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 55.7725 - sparse_categorical_accuracy: 0.3343
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 55.7424 - sparse_categorical_accuracy: 0.3344
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 55.7129 - sparse_categorical_accuracy: 0.3345
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 55.6835 - sparse_categorical_accuracy: 0.3346
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 55.6543 - sparse_categorical_accuracy: 0.3346
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 55.6249 - sparse_categorical_accuracy: 0.3347
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 55.5968 - sparse_categorical_accuracy: 0.3348
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 55.5756 - sparse_categorical_accuracy: 0.3348
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 55.5541 - sparse_categorical_accuracy: 0.3349
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 55.5328 - sparse_categorical_accuracy: 0.3349
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 55.5113 - sparse_categorical_accuracy: 0.3350
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 55.4897 - sparse_categorical_accuracy: 0.3351
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 55.4680 - sparse_categorical_accuracy: 0.3351
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 55.4463 - sparse_categorical_accuracy: 0.3351
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 55.4254 - sparse_categorical_accuracy: 0.3352
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 55.4044 - sparse_categorical_accuracy: 0.3352
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 55.3833 - sparse_categorical_accuracy: 0.3352
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 55.3620 - sparse_categorical_accuracy: 0.3352
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 55.3407 - sparse_categorical_accuracy: 0.3352
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 55.3192 - sparse_categorical_accuracy: 0.3352
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 55.2975 - sparse_categorical_accuracy: 0.3352
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 55.2758 - sparse_categorical_accuracy: 0.3352
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 55.2539 - sparse_categorical_accuracy: 0.3352
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 55.2319 - sparse_categorical_accuracy: 0.3352
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 55.2103 - sparse_categorical_accuracy: 0.3352
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 55.1890 - sparse_categorical_accuracy: 0.3352
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 55.1664 - sparse_categorical_accuracy: 0.3351
100/100 ββββββββββββββββββββ 106s 1s/step - loss: 55.1443 - sparse_categorical_accuracy: 0.3351 - val_loss: 50221851662203486208.0000 - val_sparse_categorical_accuracy: 0.3242
Epoch 19/20
1/100 [37mββββββββββββββββββββ 1:41 1s/step - loss: 48.0290 - sparse_categorical_accuracy: 0.2188
2/100 [37mββββββββββββββββββββ 1:44 1s/step - loss: 48.0152 - sparse_categorical_accuracy: 0.2422
3/100 [37mββββββββββββββββββββ 1:41 1s/step - loss: 48.0897 - sparse_categorical_accuracy: 0.2622
4/100 [37mββββββββββββββββββββ 1:38 1s/step - loss: 48.2575 - sparse_categorical_accuracy: 0.2786
5/100 β[37mβββββββββββββββββββ 1:37 1s/step - loss: 48.2910 - sparse_categorical_accuracy: 0.2917
6/100 β[37mβββββββββββββββββββ 1:36 1s/step - loss: 48.2856 - sparse_categorical_accuracy: 0.3012
7/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 48.2775 - sparse_categorical_accuracy: 0.3067
8/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 48.2703 - sparse_categorical_accuracy: 0.3098
9/100 β[37mβββββββββββββββββββ 1:32 1s/step - loss: 48.2452 - sparse_categorical_accuracy: 0.3132
10/100 ββ[37mββββββββββββββββββ 1:32 1s/step - loss: 48.2307 - sparse_categorical_accuracy: 0.3147
11/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 48.2224 - sparse_categorical_accuracy: 0.3148
12/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 48.2436 - sparse_categorical_accuracy: 0.3154
13/100 ββ[37mββββββββββββββββββ 1:29 1s/step - loss: 48.4003 - sparse_categorical_accuracy: 0.3165
14/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 48.5188 - sparse_categorical_accuracy: 0.3173
15/100 βββ[37mβββββββββββββββββ 1:27 1s/step - loss: 48.6114 - sparse_categorical_accuracy: 0.3177
16/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 48.6889 - sparse_categorical_accuracy: 0.3188
17/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 48.8238 - sparse_categorical_accuracy: 0.3200
18/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 48.9324 - sparse_categorical_accuracy: 0.3209
19/100 βββ[37mβββββββββββββββββ 1:22 1s/step - loss: 49.0280 - sparse_categorical_accuracy: 0.3215
20/100 ββββ[37mββββββββββββββββ 1:22 1s/step - loss: 49.1080 - sparse_categorical_accuracy: 0.3221
21/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 49.1839 - sparse_categorical_accuracy: 0.3223
22/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 49.2456 - sparse_categorical_accuracy: 0.3229
23/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 49.3109 - sparse_categorical_accuracy: 0.3234
24/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 49.3649 - sparse_categorical_accuracy: 0.3238
25/100 βββββ[37mβββββββββββββββ 1:17 1s/step - loss: 49.4094 - sparse_categorical_accuracy: 0.3242
26/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 49.4442 - sparse_categorical_accuracy: 0.3245
27/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 49.4733 - sparse_categorical_accuracy: 0.3249
28/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 49.4992 - sparse_categorical_accuracy: 0.3254
29/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 49.5312 - sparse_categorical_accuracy: 0.3259
30/100 ββββββ[37mββββββββββββββ 1:12 1s/step - loss: 49.5580 - sparse_categorical_accuracy: 0.3263
31/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 49.5893 - sparse_categorical_accuracy: 0.3266
32/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 49.6143 - sparse_categorical_accuracy: 0.3269
33/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 49.6356 - sparse_categorical_accuracy: 0.3271
34/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 49.6533 - sparse_categorical_accuracy: 0.3274
35/100 βββββββ[37mβββββββββββββ 1:07 1s/step - loss: 49.6677 - sparse_categorical_accuracy: 0.3276
36/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 49.6871 - sparse_categorical_accuracy: 0.3280
37/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 49.7037 - sparse_categorical_accuracy: 0.3283
38/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 49.7168 - sparse_categorical_accuracy: 0.3287
39/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 49.7293 - sparse_categorical_accuracy: 0.3290
40/100 ββββββββ[37mββββββββββββ 1:02 1s/step - loss: 49.7390 - sparse_categorical_accuracy: 0.3293
41/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 49.7459 - sparse_categorical_accuracy: 0.3296
42/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 49.7542 - sparse_categorical_accuracy: 0.3298
43/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 49.7604 - sparse_categorical_accuracy: 0.3300
44/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 49.7769 - sparse_categorical_accuracy: 0.3302
45/100 βββββββββ[37mβββββββββββ 57s 1s/step - loss: 49.7948 - sparse_categorical_accuracy: 0.3304
46/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 49.8099 - sparse_categorical_accuracy: 0.3306
47/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 49.8228 - sparse_categorical_accuracy: 0.3307
48/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 49.8335 - sparse_categorical_accuracy: 0.3307
49/100 βββββββββ[37mβββββββββββ 52s 1s/step - loss: 49.8428 - sparse_categorical_accuracy: 0.3308
50/100 ββββββββββ[37mββββββββββ 51s 1s/step - loss: 49.8501 - sparse_categorical_accuracy: 0.3308
51/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 49.8558 - sparse_categorical_accuracy: 0.3308
52/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 49.8601 - sparse_categorical_accuracy: 0.3308
53/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 49.8642 - sparse_categorical_accuracy: 0.3308
54/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 49.8671 - sparse_categorical_accuracy: 0.3309
55/100 βββββββββββ[37mβββββββββ 46s 1s/step - loss: 49.8689 - sparse_categorical_accuracy: 0.3310
56/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 49.8703 - sparse_categorical_accuracy: 0.3311
57/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 49.8753 - sparse_categorical_accuracy: 0.3312
58/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 49.8791 - sparse_categorical_accuracy: 0.3313
59/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 49.8816 - sparse_categorical_accuracy: 0.3315
60/100 ββββββββββββ[37mββββββββ 41s 1s/step - loss: 49.8859 - sparse_categorical_accuracy: 0.3316
61/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 49.8905 - sparse_categorical_accuracy: 0.3317
62/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 49.8946 - sparse_categorical_accuracy: 0.3318
63/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 49.8977 - sparse_categorical_accuracy: 0.3319
64/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 49.9000 - sparse_categorical_accuracy: 0.3320
65/100 βββββββββββββ[37mβββββββ 36s 1s/step - loss: 49.9015 - sparse_categorical_accuracy: 0.3321
66/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 49.9024 - sparse_categorical_accuracy: 0.3322
67/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 49.9043 - sparse_categorical_accuracy: 0.3322
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 49.9063 - sparse_categorical_accuracy: 0.3322
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 49.9077 - sparse_categorical_accuracy: 0.3323
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 49.9082 - sparse_categorical_accuracy: 0.3323
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 49.9081 - sparse_categorical_accuracy: 0.3323
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 49.9074 - sparse_categorical_accuracy: 0.3323
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 49.9060 - sparse_categorical_accuracy: 0.3323
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 49.9042 - sparse_categorical_accuracy: 0.3323
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 49.9035 - sparse_categorical_accuracy: 0.3323
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 49.9023 - sparse_categorical_accuracy: 0.3323
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 49.9021 - sparse_categorical_accuracy: 0.3323
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 49.9030 - sparse_categorical_accuracy: 0.3323
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 49.9032 - sparse_categorical_accuracy: 0.3322
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 49.9029 - sparse_categorical_accuracy: 0.3322
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 49.9061 - sparse_categorical_accuracy: 0.3322
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 49.9088 - sparse_categorical_accuracy: 0.3322
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 49.9109 - sparse_categorical_accuracy: 0.3321
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 49.9124 - sparse_categorical_accuracy: 0.3321
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 49.9136 - sparse_categorical_accuracy: 0.3321
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 49.9143 - sparse_categorical_accuracy: 0.3321
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 49.9144 - sparse_categorical_accuracy: 0.3320
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 49.9143 - sparse_categorical_accuracy: 0.3320
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 49.9138 - sparse_categorical_accuracy: 0.3320
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 49.9136 - sparse_categorical_accuracy: 0.3319
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 49.9129 - sparse_categorical_accuracy: 0.3319
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 49.9119 - sparse_categorical_accuracy: 0.3318
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 49.9104 - sparse_categorical_accuracy: 0.3318
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 49.9085 - sparse_categorical_accuracy: 0.3317
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 49.9062 - sparse_categorical_accuracy: 0.3317
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 49.9041 - sparse_categorical_accuracy: 0.3317
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 49.9024 - sparse_categorical_accuracy: 0.3317
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 49.9033 - sparse_categorical_accuracy: 0.3317
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 49.9038 - sparse_categorical_accuracy: 0.3317
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 49.9019 - sparse_categorical_accuracy: 0.3317
100/100 ββββββββββββββββββββ 108s 1s/step - loss: 49.9001 - sparse_categorical_accuracy: 0.3317 - val_loss: 69256328.0000 - val_sparse_categorical_accuracy: 0.3579
Epoch 20/20
1/100 [37mββββββββββββββββββββ 1:42 1s/step - loss: 45.8100 - sparse_categorical_accuracy: 0.4062
2/100 [37mββββββββββββββββββββ 1:37 990ms/step - loss: 45.8442 - sparse_categorical_accuracy: 0.4062
3/100 [37mββββββββββββββββββββ 1:37 1s/step - loss: 45.8131 - sparse_categorical_accuracy: 0.3993
4/100 [37mββββββββββββββββββββ 1:36 1s/step - loss: 45.8064 - sparse_categorical_accuracy: 0.3913
5/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 45.8227 - sparse_categorical_accuracy: 0.3868
6/100 β[37mβββββββββββββββββββ 1:35 1s/step - loss: 45.8191 - sparse_categorical_accuracy: 0.3831
7/100 β[37mβββββββββββββββββββ 1:34 1s/step - loss: 45.8214 - sparse_categorical_accuracy: 0.3762
8/100 β[37mβββββββββββββββββββ 1:33 1s/step - loss: 45.8634 - sparse_categorical_accuracy: 0.3702
9/100 β[37mβββββββββββββββββββ 1:31 1s/step - loss: 45.8982 - sparse_categorical_accuracy: 0.3634
10/100 ββ[37mββββββββββββββββββ 1:31 1s/step - loss: 45.9172 - sparse_categorical_accuracy: 0.3589
11/100 ββ[37mββββββββββββββββββ 1:30 1s/step - loss: 45.9713 - sparse_categorical_accuracy: 0.3560
12/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 46.0114 - sparse_categorical_accuracy: 0.3548
13/100 ββ[37mββββββββββββββββββ 1:28 1s/step - loss: 46.0793 - sparse_categorical_accuracy: 0.3535
14/100 ββ[37mββββββββββββββββββ 1:27 1s/step - loss: 46.1364 - sparse_categorical_accuracy: 0.3520
15/100 βββ[37mβββββββββββββββββ 1:26 1s/step - loss: 46.1765 - sparse_categorical_accuracy: 0.3509
16/100 βββ[37mβββββββββββββββββ 1:25 1s/step - loss: 46.2080 - sparse_categorical_accuracy: 0.3504
17/100 βββ[37mβββββββββββββββββ 1:24 1s/step - loss: 46.2316 - sparse_categorical_accuracy: 0.3498
18/100 βββ[37mβββββββββββββββββ 1:23 1s/step - loss: 46.2481 - sparse_categorical_accuracy: 0.3491
19/100 βββ[37mβββββββββββββββββ 1:22 1s/step - loss: 46.2610 - sparse_categorical_accuracy: 0.3484
20/100 ββββ[37mββββββββββββββββ 1:21 1s/step - loss: 46.2706 - sparse_categorical_accuracy: 0.3473
21/100 ββββ[37mββββββββββββββββ 1:20 1s/step - loss: 46.2769 - sparse_categorical_accuracy: 0.3465
22/100 ββββ[37mββββββββββββββββ 1:19 1s/step - loss: 46.2793 - sparse_categorical_accuracy: 0.3458
23/100 ββββ[37mββββββββββββββββ 1:18 1s/step - loss: 46.2795 - sparse_categorical_accuracy: 0.3452
24/100 ββββ[37mββββββββββββββββ 1:17 1s/step - loss: 46.2889 - sparse_categorical_accuracy: 0.3452
25/100 βββββ[37mβββββββββββββββ 1:16 1s/step - loss: 46.2960 - sparse_categorical_accuracy: 0.3454
26/100 βββββ[37mβββββββββββββββ 1:15 1s/step - loss: 46.3007 - sparse_categorical_accuracy: 0.3455
27/100 βββββ[37mβββββββββββββββ 1:14 1s/step - loss: 46.3038 - sparse_categorical_accuracy: 0.3455
28/100 βββββ[37mβββββββββββββββ 1:13 1s/step - loss: 46.3053 - sparse_categorical_accuracy: 0.3455
29/100 βββββ[37mβββββββββββββββ 1:12 1s/step - loss: 46.3057 - sparse_categorical_accuracy: 0.3454
30/100 ββββββ[37mββββββββββββββ 1:11 1s/step - loss: 46.3050 - sparse_categorical_accuracy: 0.3453
31/100 ββββββ[37mββββββββββββββ 1:10 1s/step - loss: 46.3095 - sparse_categorical_accuracy: 0.3451
32/100 ββββββ[37mββββββββββββββ 1:09 1s/step - loss: 46.3201 - sparse_categorical_accuracy: 0.3449
33/100 ββββββ[37mββββββββββββββ 1:08 1s/step - loss: 46.3293 - sparse_categorical_accuracy: 0.3446
34/100 ββββββ[37mββββββββββββββ 1:07 1s/step - loss: 46.3368 - sparse_categorical_accuracy: 0.3444
35/100 βββββββ[37mβββββββββββββ 1:06 1s/step - loss: 46.3819 - sparse_categorical_accuracy: 0.3445
36/100 βββββββ[37mβββββββββββββ 1:05 1s/step - loss: 46.4228 - sparse_categorical_accuracy: 0.3445
37/100 βββββββ[37mβββββββββββββ 1:04 1s/step - loss: 46.4597 - sparse_categorical_accuracy: 0.3446
38/100 βββββββ[37mβββββββββββββ 1:03 1s/step - loss: 46.4928 - sparse_categorical_accuracy: 0.3446
39/100 βββββββ[37mβββββββββββββ 1:02 1s/step - loss: 46.5227 - sparse_categorical_accuracy: 0.3448
40/100 ββββββββ[37mββββββββββββ 1:01 1s/step - loss: 46.5496 - sparse_categorical_accuracy: 0.3448
41/100 ββββββββ[37mββββββββββββ 1:00 1s/step - loss: 46.5741 - sparse_categorical_accuracy: 0.3447
42/100 ββββββββ[37mββββββββββββ 59s 1s/step - loss: 46.5961 - sparse_categorical_accuracy: 0.3447
43/100 ββββββββ[37mββββββββββββ 58s 1s/step - loss: 46.6158 - sparse_categorical_accuracy: 0.3446
44/100 ββββββββ[37mββββββββββββ 57s 1s/step - loss: 46.6335 - sparse_categorical_accuracy: 0.3445
45/100 βββββββββ[37mβββββββββββ 56s 1s/step - loss: 46.6635 - sparse_categorical_accuracy: 0.3444
46/100 βββββββββ[37mβββββββββββ 55s 1s/step - loss: 46.6909 - sparse_categorical_accuracy: 0.3442
47/100 βββββββββ[37mβββββββββββ 54s 1s/step - loss: 46.7195 - sparse_categorical_accuracy: 0.3439
48/100 βββββββββ[37mβββββββββββ 53s 1s/step - loss: 46.7477 - sparse_categorical_accuracy: 0.3437
49/100 βββββββββ[37mβββββββββββ 51s 1s/step - loss: 46.7799 - sparse_categorical_accuracy: 0.3435
50/100 ββββββββββ[37mββββββββββ 50s 1s/step - loss: 46.8102 - sparse_categorical_accuracy: 0.3434
51/100 ββββββββββ[37mββββββββββ 49s 1s/step - loss: 46.8381 - sparse_categorical_accuracy: 0.3432
52/100 ββββββββββ[37mββββββββββ 48s 1s/step - loss: 46.8639 - sparse_categorical_accuracy: 0.3430
53/100 ββββββββββ[37mββββββββββ 47s 1s/step - loss: 46.8877 - sparse_categorical_accuracy: 0.3429
54/100 ββββββββββ[37mββββββββββ 46s 1s/step - loss: 46.9095 - sparse_categorical_accuracy: 0.3428
55/100 βββββββββββ[37mβββββββββ 45s 1s/step - loss: 46.9390 - sparse_categorical_accuracy: 0.3427
56/100 βββββββββββ[37mβββββββββ 44s 1s/step - loss: 46.9676 - sparse_categorical_accuracy: 0.3425
57/100 βββββββββββ[37mβββββββββ 43s 1s/step - loss: 46.9940 - sparse_categorical_accuracy: 0.3423
58/100 βββββββββββ[37mβββββββββ 42s 1s/step - loss: 47.0190 - sparse_categorical_accuracy: 0.3422
59/100 βββββββββββ[37mβββββββββ 41s 1s/step - loss: 47.0420 - sparse_categorical_accuracy: 0.3421
60/100 ββββββββββββ[37mββββββββ 40s 1s/step - loss: 47.0631 - sparse_categorical_accuracy: 0.3421
61/100 ββββββββββββ[37mββββββββ 39s 1s/step - loss: 47.0824 - sparse_categorical_accuracy: 0.3420
62/100 ββββββββββββ[37mββββββββ 38s 1s/step - loss: 47.1005 - sparse_categorical_accuracy: 0.3419
63/100 ββββββββββββ[37mββββββββ 37s 1s/step - loss: 47.1221 - sparse_categorical_accuracy: 0.3419
64/100 ββββββββββββ[37mββββββββ 36s 1s/step - loss: 47.1436 - sparse_categorical_accuracy: 0.3418
65/100 βββββββββββββ[37mβββββββ 35s 1s/step - loss: 47.1636 - sparse_categorical_accuracy: 0.3417
66/100 βββββββββββββ[37mβββββββ 34s 1s/step - loss: 47.1827 - sparse_categorical_accuracy: 0.3417
67/100 βββββββββββββ[37mβββββββ 33s 1s/step - loss: 47.2009 - sparse_categorical_accuracy: 0.3417
68/100 βββββββββββββ[37mβββββββ 32s 1s/step - loss: 47.2186 - sparse_categorical_accuracy: 0.3417
69/100 βββββββββββββ[37mβββββββ 31s 1s/step - loss: 47.2351 - sparse_categorical_accuracy: 0.3418
70/100 ββββββββββββββ[37mββββββ 30s 1s/step - loss: 47.2515 - sparse_categorical_accuracy: 0.3418
71/100 ββββββββββββββ[37mββββββ 29s 1s/step - loss: 47.2666 - sparse_categorical_accuracy: 0.3418
72/100 ββββββββββββββ[37mββββββ 28s 1s/step - loss: 47.2820 - sparse_categorical_accuracy: 0.3418
73/100 ββββββββββββββ[37mββββββ 27s 1s/step - loss: 47.2965 - sparse_categorical_accuracy: 0.3419
74/100 ββββββββββββββ[37mββββββ 26s 1s/step - loss: 47.3101 - sparse_categorical_accuracy: 0.3419
75/100 βββββββββββββββ[37mβββββ 25s 1s/step - loss: 47.3227 - sparse_categorical_accuracy: 0.3419
76/100 βββββββββββββββ[37mβββββ 24s 1s/step - loss: 47.3343 - sparse_categorical_accuracy: 0.3419
77/100 βββββββββββββββ[37mβββββ 23s 1s/step - loss: 47.3463 - sparse_categorical_accuracy: 0.3418
78/100 βββββββββββββββ[37mβββββ 22s 1s/step - loss: 47.3574 - sparse_categorical_accuracy: 0.3418
79/100 βββββββββββββββ[37mβββββ 21s 1s/step - loss: 47.3678 - sparse_categorical_accuracy: 0.3418
80/100 ββββββββββββββββ[37mββββ 20s 1s/step - loss: 47.3773 - sparse_categorical_accuracy: 0.3417
81/100 ββββββββββββββββ[37mββββ 19s 1s/step - loss: 47.3878 - sparse_categorical_accuracy: 0.3417
82/100 ββββββββββββββββ[37mββββ 18s 1s/step - loss: 47.3974 - sparse_categorical_accuracy: 0.3417
83/100 ββββββββββββββββ[37mββββ 17s 1s/step - loss: 47.4062 - sparse_categorical_accuracy: 0.3416
84/100 ββββββββββββββββ[37mββββ 16s 1s/step - loss: 47.4142 - sparse_categorical_accuracy: 0.3416
85/100 βββββββββββββββββ[37mβββ 15s 1s/step - loss: 47.4216 - sparse_categorical_accuracy: 0.3415
86/100 βββββββββββββββββ[37mβββ 14s 1s/step - loss: 47.4285 - sparse_categorical_accuracy: 0.3414
87/100 βββββββββββββββββ[37mβββ 13s 1s/step - loss: 47.4351 - sparse_categorical_accuracy: 0.3414
88/100 βββββββββββββββββ[37mβββ 12s 1s/step - loss: 47.4411 - sparse_categorical_accuracy: 0.3413
89/100 βββββββββββββββββ[37mβββ 11s 1s/step - loss: 47.4466 - sparse_categorical_accuracy: 0.3412
90/100 ββββββββββββββββββ[37mββ 10s 1s/step - loss: 47.4517 - sparse_categorical_accuracy: 0.3411
91/100 ββββββββββββββββββ[37mββ 9s 1s/step - loss: 47.4563 - sparse_categorical_accuracy: 0.3410
92/100 ββββββββββββββββββ[37mββ 8s 1s/step - loss: 47.4604 - sparse_categorical_accuracy: 0.3410
93/100 ββββββββββββββββββ[37mββ 7s 1s/step - loss: 47.4641 - sparse_categorical_accuracy: 0.3409
94/100 ββββββββββββββββββ[37mββ 6s 1s/step - loss: 47.4688 - sparse_categorical_accuracy: 0.3409
95/100 βββββββββββββββββββ[37mβ 5s 1s/step - loss: 47.4731 - sparse_categorical_accuracy: 0.3408
96/100 βββββββββββββββββββ[37mβ 4s 1s/step - loss: 47.4771 - sparse_categorical_accuracy: 0.3407
97/100 βββββββββββββββββββ[37mβ 3s 1s/step - loss: 47.4814 - sparse_categorical_accuracy: 0.3406
98/100 βββββββββββββββββββ[37mβ 2s 1s/step - loss: 47.4854 - sparse_categorical_accuracy: 0.3406
99/100 βββββββββββββββββββ[37mβ 1s 1s/step - loss: 47.4889 - sparse_categorical_accuracy: 0.3405
100/100 ββββββββββββββββββββ 0s 1s/step - loss: 47.4901 - sparse_categorical_accuracy: 0.3404
100/100 ββββββββββββββββββββ 106s 1s/step - loss: 47.4913 - sparse_categorical_accuracy: 0.3404 - val_loss: 1814011445248.0000 - val_sparse_categorical_accuracy: 0.3592
<keras.src.callbacks.history.History at 0x7f596cb7b8e0>
We can use matplotlib to visualize our trained model performance.
data = test_dataset.take(1)
points, labels = list(data)[0]
points = points[:8, ...]
labels = labels[:8, ...]
# run test data through model
preds = model.predict(points)
preds = ops.argmax(preds, -1)
points = points.numpy()
# plot points with predicted class and label
fig = plt.figure(figsize=(15, 10))
for i in range(8):
ax = fig.add_subplot(2, 4, i + 1, projection="3d")
ax.scatter(points[i, :, 0], points[i, :, 1], points[i, :, 2])
ax.set_title(
"pred: {:}, label: {:}".format(
CLASS_MAP[preds[i].numpy()], CLASS_MAP[labels.numpy()[i]]
)
)
ax.set_axis_off()
plt.show()
1/1 ββββββββββββββββββββ 0s 404ms/step
1/1 ββββββββββββββββββββ 0s 405ms/step