Author: Khalid Salama
Date created: 2022/01/25
Last modified: 2022/01/25
Description: Using TensorFlow Decision Forests for structured data classification.
TensorFlow Decision Forests is a collection of state-of-the-art algorithms of Decision Forest models that are compatible with Keras APIs. The models include Random Forests, Gradient Boosted Trees, and CART, and can be used for regression, classification, and ranking task. For a beginner's guide to TensorFlow Decision Forests, please refer to this tutorial.
This example uses Gradient Boosted Trees model in binary classification of structured data, and covers the following scenarios:
This example uses TensorFlow 2.7 or higher, as well as TensorFlow Decision Forests, which you can install using the following command:
pip install -U tensorflow_decision_forests
import math
import urllib
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow_decision_forests as tfdf
This example uses the United States Census Income Dataset provided by the UC Irvine Machine Learning Repository. The task is binary classification to determine whether a person makes over 50K a year.
The dataset includes ~300K instances with 41 input features: 7 numerical features and 34 categorical features.
First we load the data from the UCI Machine Learning Repository into a Pandas DataFrame.
BASE_PATH = "https://kdd.ics.uci.edu/databases/census-income/census-income"
CSV_HEADER = [
l.decode("utf-8").split(":")[0].replace(" ", "_")
for l in urllib.request.urlopen(f"{BASE_PATH}.names")
if not l.startswith(b"|")
][2:]
CSV_HEADER.append("income_level")
train_data = pd.read_csv(f"{BASE_PATH}.data.gz", header=None, names=CSV_HEADER,)
test_data = pd.read_csv(f"{BASE_PATH}.test.gz", header=None, names=CSV_HEADER,)
Here, we define the metadata of the dataset that will be useful for encoding the input features with respect to their types.
# Target column name.
TARGET_COLUMN_NAME = "income_level"
# The labels of the target columns.
TARGET_LABELS = [" - 50000.", " 50000+."]
# Weight column name.
WEIGHT_COLUMN_NAME = "instance_weight"
# Numeric feature names.
NUMERIC_FEATURE_NAMES = [
"age",
"wage_per_hour",
"capital_gains",
"capital_losses",
"dividends_from_stocks",
"num_persons_worked_for_employer",
"weeks_worked_in_year",
]
# Categorical features and their vocabulary lists.
CATEGORICAL_FEATURE_NAMES = [
"class_of_worker",
"detailed_industry_recode",
"detailed_occupation_recode",
"education",
"enroll_in_edu_inst_last_wk",
"marital_stat",
"major_industry_code",
"major_occupation_code",
"race",
"hispanic_origin",
"sex",
"member_of_a_labor_union",
"reason_for_unemployment",
"full_or_part_time_employment_stat",
"tax_filer_stat",
"region_of_previous_residence",
"state_of_previous_residence",
"detailed_household_and_family_stat",
"detailed_household_summary_in_household",
"migration_code-change_in_msa",
"migration_code-change_in_reg",
"migration_code-move_within_reg",
"live_in_this_house_1_year_ago",
"migration_prev_res_in_sunbelt",
"family_members_under_18",
"country_of_birth_father",
"country_of_birth_mother",
"country_of_birth_self",
"citizenship",
"own_business_or_self_employed",
"fill_inc_questionnaire_for_veteran's_admin",
"veterans_benefits",
"year",
]
Now we perform basic data preparation.
def prepare_dataframe(dataframe):
# Convert the target labels from string to integer.
dataframe[TARGET_COLUMN_NAME] = dataframe[TARGET_COLUMN_NAME].map(
TARGET_LABELS.index
)
# Cast the categorical features to string.
for feature_name in CATEGORICAL_FEATURE_NAMES:
dataframe[feature_name] = dataframe[feature_name].astype(str)
prepare_dataframe(train_data)
prepare_dataframe(test_data)
Now let's show the shapes of the training and test dataframes, and display some instances.
print(f"Train data shape: {train_data.shape}")
print(f"Test data shape: {test_data.shape}")
print(train_data.head().T)
Train data shape: (199523, 42)
Test data shape: (99762, 42)
0 \
age 73
class_of_worker Not in universe
detailed_industry_recode 0
detailed_occupation_recode 0
education High school graduate
wage_per_hour 0
enroll_in_edu_inst_last_wk Not in universe
marital_stat Widowed
major_industry_code Not in universe or children
major_occupation_code Not in universe
race White
hispanic_origin All other
sex Female
member_of_a_labor_union Not in universe
reason_for_unemployment Not in universe
full_or_part_time_employment_stat Not in labor force
capital_gains 0
capital_losses 0
dividends_from_stocks 0
tax_filer_stat Nonfiler
region_of_previous_residence Not in universe
state_of_previous_residence Not in universe
detailed_household_and_family_stat Other Rel 18+ ever marr not in subfamily
detailed_household_summary_in_household Other relative of householder
instance_weight 1700.09
migration_code-change_in_msa ?
migration_code-change_in_reg ?
migration_code-move_within_reg ?
live_in_this_house_1_year_ago Not in universe under 1 year old
migration_prev_res_in_sunbelt ?
num_persons_worked_for_employer 0
family_members_under_18 Not in universe
country_of_birth_father United-States
country_of_birth_mother United-States
country_of_birth_self United-States
citizenship Native- Born in the United States
own_business_or_self_employed 0
fill_inc_questionnaire_for_veteran's_admin Not in universe
veterans_benefits 2
weeks_worked_in_year 0
year 95
income_level 0
1 \
age 58
class_of_worker Self-employed-not incorporated
detailed_industry_recode 4
detailed_occupation_recode 34
education Some college but no degree
wage_per_hour 0
enroll_in_edu_inst_last_wk Not in universe
marital_stat Divorced
major_industry_code Construction
major_occupation_code Precision production craft & repair
race White
hispanic_origin All other
sex Male
member_of_a_labor_union Not in universe
reason_for_unemployment Not in universe
full_or_part_time_employment_stat Children or Armed Forces
capital_gains 0
capital_losses 0
dividends_from_stocks 0
tax_filer_stat Head of household
region_of_previous_residence South
state_of_previous_residence Arkansas
detailed_household_and_family_stat Householder
detailed_household_summary_in_household Householder
instance_weight 1053.55
migration_code-change_in_msa MSA to MSA
migration_code-change_in_reg Same county
migration_code-move_within_reg Same county
live_in_this_house_1_year_ago No
migration_prev_res_in_sunbelt Yes
num_persons_worked_for_employer 1
family_members_under_18 Not in universe
country_of_birth_father United-States
country_of_birth_mother United-States
country_of_birth_self United-States
citizenship Native- Born in the United States
own_business_or_self_employed 0
fill_inc_questionnaire_for_veteran's_admin Not in universe
veterans_benefits 2
weeks_worked_in_year 52
year 94
income_level 0
2 \
age 18
class_of_worker Not in universe
detailed_industry_recode 0
detailed_occupation_recode 0
education 10th grade
wage_per_hour 0
enroll_in_edu_inst_last_wk High school
marital_stat Never married
major_industry_code Not in universe or children
major_occupation_code Not in universe
race Asian or Pacific Islander
hispanic_origin All other
sex Female
member_of_a_labor_union Not in universe
reason_for_unemployment Not in universe
full_or_part_time_employment_stat Not in labor force
capital_gains 0
capital_losses 0
dividends_from_stocks 0
tax_filer_stat Nonfiler
region_of_previous_residence Not in universe
state_of_previous_residence Not in universe
detailed_household_and_family_stat Child 18+ never marr Not in a subfamily
detailed_household_summary_in_household Child 18 or older
instance_weight 991.95
migration_code-change_in_msa ?
migration_code-change_in_reg ?
migration_code-move_within_reg ?
live_in_this_house_1_year_ago Not in universe under 1 year old
migration_prev_res_in_sunbelt ?
num_persons_worked_for_employer 0
family_members_under_18 Not in universe
country_of_birth_father Vietnam
country_of_birth_mother Vietnam
country_of_birth_self Vietnam
citizenship Foreign born- Not a citizen of U S
own_business_or_self_employed 0
fill_inc_questionnaire_for_veteran's_admin Not in universe
veterans_benefits 2
weeks_worked_in_year 0
year 95
income_level 0
3 \
age 9
class_of_worker Not in universe
detailed_industry_recode 0
detailed_occupation_recode 0
education Children
wage_per_hour 0
enroll_in_edu_inst_last_wk Not in universe
marital_stat Never married
major_industry_code Not in universe or children
major_occupation_code Not in universe
race White
hispanic_origin All other
sex Female
member_of_a_labor_union Not in universe
reason_for_unemployment Not in universe
full_or_part_time_employment_stat Children or Armed Forces
capital_gains 0
capital_losses 0
dividends_from_stocks 0
tax_filer_stat Nonfiler
region_of_previous_residence Not in universe
state_of_previous_residence Not in universe
detailed_household_and_family_stat Child <18 never marr not in subfamily
detailed_household_summary_in_household Child under 18 never married
instance_weight 1758.14
migration_code-change_in_msa Nonmover
migration_code-change_in_reg Nonmover
migration_code-move_within_reg Nonmover
live_in_this_house_1_year_ago Yes
migration_prev_res_in_sunbelt Not in universe
num_persons_worked_for_employer 0
family_members_under_18 Both parents present
country_of_birth_father United-States
country_of_birth_mother United-States
country_of_birth_self United-States
citizenship Native- Born in the United States
own_business_or_self_employed 0
fill_inc_questionnaire_for_veteran's_admin Not in universe
veterans_benefits 0
weeks_worked_in_year 0
year 94
income_level 0
4
age 10
class_of_worker Not in universe
detailed_industry_recode 0
detailed_occupation_recode 0
education Children
wage_per_hour 0
enroll_in_edu_inst_last_wk Not in universe
marital_stat Never married
major_industry_code Not in universe or children
major_occupation_code Not in universe
race White
hispanic_origin All other
sex Female
member_of_a_labor_union Not in universe
reason_for_unemployment Not in universe
full_or_part_time_employment_stat Children or Armed Forces
capital_gains 0
capital_losses 0
dividends_from_stocks 0
tax_filer_stat Nonfiler
region_of_previous_residence Not in universe
state_of_previous_residence Not in universe
detailed_household_and_family_stat Child <18 never marr not in subfamily
detailed_household_summary_in_household Child under 18 never married
instance_weight 1069.16
migration_code-change_in_msa Nonmover
migration_code-change_in_reg Nonmover
migration_code-move_within_reg Nonmover
live_in_this_house_1_year_ago Yes
migration_prev_res_in_sunbelt Not in universe
num_persons_worked_for_employer 0
family_members_under_18 Both parents present
country_of_birth_father United-States
country_of_birth_mother United-States
country_of_birth_self United-States
citizenship Native- Born in the United States
own_business_or_self_employed 0
fill_inc_questionnaire_for_veteran's_admin Not in universe
veterans_benefits 0
weeks_worked_in_year 0
year 94
income_level 0
You can find all the parameters of the Gradient Boosted Tree model in the documentation
# Maximum number of decision trees. The effective number of trained trees can be smaller if early stopping is enabled.
NUM_TREES = 250
# Minimum number of examples in a node.
MIN_EXAMPLES = 6
# Maximum depth of the tree. max_depth=1 means that all trees will be roots.
MAX_DEPTH = 5
# Ratio of the dataset (sampling without replacement) used to train individual trees for the random sampling method.
SUBSAMPLE = 0.65
# Control the sampling of the datasets used to train individual trees.
SAMPLING_METHOD = "RANDOM"
# Ratio of the training dataset used to monitor the training. Require to be >0 if early stopping is enabled.
VALIDATION_RATIO = 0.1
The run_experiment()
method is responsible loading the train and test datasets,
training a given model, and evaluating the trained model.
Note that when training a Decision Forests model, only one epoch is needed to
read the full dataset. Any extra steps will result in unnecessary slower training.
Therefore, the default num_epochs=1
is used in the run_experiment()
method.
def run_experiment(model, train_data, test_data, num_epochs=1, batch_size=None):
train_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(
train_data, label=TARGET_COLUMN_NAME, weight=WEIGHT_COLUMN_NAME
)
test_dataset = tfdf.keras.pd_dataframe_to_tf_dataset(
test_data, label=TARGET_COLUMN_NAME, weight=WEIGHT_COLUMN_NAME
)
model.fit(train_dataset, epochs=num_epochs, batch_size=batch_size)
_, accuracy = model.evaluate(test_dataset, verbose=0)
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
You can attach semantics to each feature to control how it is used by the model. If not specified, the semantics are inferred from the representation type. It is recommended to specify the feature usages explicitly to avoid incorrect inferred semantics is incorrect. For example, a categorical value identifier (integer) will be be inferred as numerical, while it is semantically categorical.
For numerical features, you can set the discretized
parameters to the number
of buckets by which the numerical feature should be discretized.
This makes the training faster but may lead to worse models.
def specify_feature_usages():
feature_usages = []
for feature_name in NUMERIC_FEATURE_NAMES:
feature_usage = tfdf.keras.FeatureUsage(
name=feature_name, semantic=tfdf.keras.FeatureSemantic.NUMERICAL
)
feature_usages.append(feature_usage)
for feature_name in CATEGORICAL_FEATURE_NAMES:
feature_usage = tfdf.keras.FeatureUsage(
name=feature_name, semantic=tfdf.keras.FeatureSemantic.CATEGORICAL
)
feature_usages.append(feature_usage)
return feature_usages
When compiling a decision forests model, you may only provide extra evaluation metrics. The loss is specified in the model construction, and the optimizer is irrelevant to decision forests models.
def create_gbt_model():
# See all the model parameters in https://www.tensorflow.org/decision_forests/api_docs/python/tfdf/keras/GradientBoostedTreesModel
gbt_model = tfdf.keras.GradientBoostedTreesModel(
features=specify_feature_usages(),
exclude_non_specified_features=True,
num_trees=NUM_TREES,
max_depth=MAX_DEPTH,
min_examples=MIN_EXAMPLES,
subsample=SUBSAMPLE,
validation_ratio=VALIDATION_RATIO,
task=tfdf.keras.Task.CLASSIFICATION,
)
gbt_model.compile(metrics=[keras.metrics.BinaryAccuracy(name="accuracy")])
return gbt_model
gbt_model = create_gbt_model()
run_experiment(gbt_model, train_data, test_data)
Starting reading the dataset
200/200 [==============================] - ETA: 0s
Dataset read in 0:00:08.829036
Training model
Model trained in 0:00:48.639771
Compiling model
200/200 [==============================] - 58s 268ms/step
Test accuracy: 95.79%
The model.summary()
method will display several types of information about
your decision trees model, model type, task, input features, and feature importance.
print(gbt_model.summary())
Model: "gradient_boosted_trees_model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
=================================================================
Total params: 1
Trainable params: 0
Non-trainable params: 1
_________________________________________________________________
Type: "GRADIENT_BOOSTED_TREES"
Task: CLASSIFICATION
Label: "__LABEL"
Input Features (40):
age
capital_gains
capital_losses
citizenship
class_of_worker
country_of_birth_father
country_of_birth_mother
country_of_birth_self
detailed_household_and_family_stat
detailed_household_summary_in_household
detailed_industry_recode
detailed_occupation_recode
dividends_from_stocks
education
enroll_in_edu_inst_last_wk
family_members_under_18
fill_inc_questionnaire_for_veteran's_admin
full_or_part_time_employment_stat
hispanic_origin
live_in_this_house_1_year_ago
major_industry_code
major_occupation_code
marital_stat
member_of_a_labor_union
migration_code-change_in_msa
migration_code-change_in_reg
migration_code-move_within_reg
migration_prev_res_in_sunbelt
num_persons_worked_for_employer
own_business_or_self_employed
race
reason_for_unemployment
region_of_previous_residence
sex
state_of_previous_residence
tax_filer_stat
veterans_benefits
wage_per_hour
weeks_worked_in_year
year
Trained with weights
Variable Importance: MEAN_MIN_DEPTH:
1. "enroll_in_edu_inst_last_wk" 3.942647 ################
2. "family_members_under_18" 3.942647 ################
3. "live_in_this_house_1_year_ago" 3.942647 ################
4. "migration_code-change_in_msa" 3.942647 ################
5. "migration_code-move_within_reg" 3.942647 ################
6. "year" 3.942647 ################
7. "__LABEL" 3.942647 ################
8. "__WEIGHTS" 3.942647 ################
9. "citizenship" 3.942137 ###############
10. "detailed_household_summary_in_household" 3.942137 ###############
11. "region_of_previous_residence" 3.942137 ###############
12. "veterans_benefits" 3.942137 ###############
13. "migration_prev_res_in_sunbelt" 3.940135 ###############
14. "migration_code-change_in_reg" 3.939926 ###############
15. "major_occupation_code" 3.937681 ###############
16. "major_industry_code" 3.933687 ###############
17. "reason_for_unemployment" 3.926320 ###############
18. "hispanic_origin" 3.900776 ###############
19. "member_of_a_labor_union" 3.894843 ###############
20. "race" 3.878617 ###############
21. "num_persons_worked_for_employer" 3.818566 ##############
22. "marital_stat" 3.795667 ##############
23. "full_or_part_time_employment_stat" 3.795431 ##############
24. "country_of_birth_mother" 3.787967 ##############
25. "tax_filer_stat" 3.784505 ##############
26. "fill_inc_questionnaire_for_veteran's_admin" 3.783607 ##############
27. "own_business_or_self_employed" 3.776398 ##############
28. "country_of_birth_father" 3.715252 #############
29. "sex" 3.708745 #############
30. "class_of_worker" 3.688424 #############
31. "weeks_worked_in_year" 3.665290 #############
32. "state_of_previous_residence" 3.657234 #############
33. "country_of_birth_self" 3.654377 #############
34. "age" 3.634295 ############
35. "wage_per_hour" 3.617817 ############
36. "detailed_household_and_family_stat" 3.594743 ############
37. "capital_losses" 3.439298 ##########
38. "dividends_from_stocks" 3.423652 ##########
39. "capital_gains" 3.222753 ########
40. "education" 3.158698 ########
41. "detailed_industry_recode" 2.981471 ######
42. "detailed_occupation_recode" 2.364817
Variable Importance: NUM_AS_ROOT:
1. "education" 33.000000 ################
2. "capital_gains" 29.000000 ##############
3. "capital_losses" 24.000000 ###########
4. "detailed_household_and_family_stat" 14.000000 ######
5. "dividends_from_stocks" 14.000000 ######
6. "wage_per_hour" 12.000000 #####
7. "country_of_birth_self" 11.000000 #####
8. "detailed_occupation_recode" 11.000000 #####
9. "weeks_worked_in_year" 11.000000 #####
10. "age" 10.000000 ####
11. "state_of_previous_residence" 10.000000 ####
12. "fill_inc_questionnaire_for_veteran's_admin" 9.000000 ####
13. "class_of_worker" 8.000000 ###
14. "full_or_part_time_employment_stat" 8.000000 ###
15. "marital_stat" 8.000000 ###
16. "own_business_or_self_employed" 8.000000 ###
17. "sex" 6.000000 ##
18. "tax_filer_stat" 5.000000 ##
19. "country_of_birth_father" 4.000000 #
20. "race" 3.000000 #
21. "detailed_industry_recode" 2.000000
22. "hispanic_origin" 2.000000
23. "country_of_birth_mother" 1.000000
24. "num_persons_worked_for_employer" 1.000000
25. "reason_for_unemployment" 1.000000
Variable Importance: NUM_NODES:
1. "detailed_occupation_recode" 785.000000 ################
2. "detailed_industry_recode" 668.000000 #############
3. "capital_gains" 275.000000 #####
4. "dividends_from_stocks" 220.000000 ####
5. "capital_losses" 197.000000 ####
6. "education" 178.000000 ###
7. "country_of_birth_mother" 128.000000 ##
8. "country_of_birth_father" 116.000000 ##
9. "age" 114.000000 ##
10. "wage_per_hour" 98.000000 #
11. "state_of_previous_residence" 95.000000 #
12. "detailed_household_and_family_stat" 78.000000 #
13. "class_of_worker" 67.000000 #
14. "country_of_birth_self" 65.000000 #
15. "sex" 65.000000 #
16. "weeks_worked_in_year" 60.000000 #
17. "tax_filer_stat" 57.000000 #
18. "num_persons_worked_for_employer" 54.000000 #
19. "own_business_or_self_employed" 30.000000
20. "marital_stat" 26.000000
21. "member_of_a_labor_union" 16.000000
22. "fill_inc_questionnaire_for_veteran's_admin" 15.000000
23. "full_or_part_time_employment_stat" 15.000000
24. "major_industry_code" 15.000000
25. "hispanic_origin" 9.000000
26. "major_occupation_code" 7.000000
27. "race" 7.000000
28. "citizenship" 1.000000
29. "detailed_household_summary_in_household" 1.000000
30. "migration_code-change_in_reg" 1.000000
31. "migration_prev_res_in_sunbelt" 1.000000
32. "reason_for_unemployment" 1.000000
33. "region_of_previous_residence" 1.000000
34. "veterans_benefits" 1.000000
Variable Importance: SUM_SCORE:
1. "detailed_occupation_recode" 15392441.075369 ################
2. "capital_gains" 5277826.822514 #####
3. "education" 4751749.289550 ####
4. "dividends_from_stocks" 3792002.951255 ###
5. "detailed_industry_recode" 2882200.882109 ##
6. "sex" 2559417.877325 ##
7. "age" 2042990.944829 ##
8. "capital_losses" 1735728.772551 #
9. "weeks_worked_in_year" 1272820.203971 #
10. "tax_filer_stat" 697890.160846
11. "num_persons_worked_for_employer" 671351.905595
12. "detailed_household_and_family_stat" 444620.829557
13. "class_of_worker" 362250.565331
14. "country_of_birth_mother" 296311.574426
15. "country_of_birth_father" 258198.889206
16. "wage_per_hour" 239764.219048
17. "state_of_previous_residence" 237687.602572
18. "country_of_birth_self" 103002.168158
19. "marital_stat" 102449.735314
20. "own_business_or_self_employed" 82938.893541
21. "fill_inc_questionnaire_for_veteran's_admin" 22692.700206
22. "full_or_part_time_employment_stat" 19078.398837
23. "major_industry_code" 18450.345505
24. "member_of_a_labor_union" 14905.360879
25. "hispanic_origin" 12602.867902
26. "major_occupation_code" 8709.665989
27. "race" 6116.282065
28. "citizenship" 3291.490393
29. "detailed_household_summary_in_household" 2733.439375
30. "veterans_benefits" 1230.940488
31. "region_of_previous_residence" 1139.240981
32. "reason_for_unemployment" 219.245124
33. "migration_code-change_in_reg" 55.806436
34. "migration_prev_res_in_sunbelt" 37.780635
Loss: BINOMIAL_LOG_LIKELIHOOD
Validation loss value: 0.228983
Number of trees per iteration: 1
Node format: NOT_SET
Number of trees: 245
Total number of nodes: 7179
Number of nodes by tree:
Count: 245 Average: 29.302 StdDev: 2.96211
Min: 17 Max: 31 Ignored: 0
----------------------------------------------
[ 17, 18) 2 0.82% 0.82%
[ 18, 19) 0 0.00% 0.82%
[ 19, 20) 3 1.22% 2.04%
[ 20, 21) 0 0.00% 2.04%
[ 21, 22) 4 1.63% 3.67%
[ 22, 23) 0 0.00% 3.67%
[ 23, 24) 15 6.12% 9.80% #
[ 24, 25) 0 0.00% 9.80%
[ 25, 26) 5 2.04% 11.84%
[ 26, 27) 0 0.00% 11.84%
[ 27, 28) 21 8.57% 20.41% #
[ 28, 29) 0 0.00% 20.41%
[ 29, 30) 39 15.92% 36.33% ###
[ 30, 31) 0 0.00% 36.33%
[ 31, 31] 156 63.67% 100.00% ##########
Depth by leafs:
Count: 3712 Average: 3.95259 StdDev: 0.249814
Min: 2 Max: 4 Ignored: 0
----------------------------------------------
[ 2, 3) 32 0.86% 0.86%
[ 3, 4) 112 3.02% 3.88%
[ 4, 4] 3568 96.12% 100.00% ##########
Number of training obs by leaf:
Count: 3712 Average: 11849.3 StdDev: 33719.3
Min: 6 Max: 179360 Ignored: 0
----------------------------------------------
[ 6, 8973) 3100 83.51% 83.51% ##########
[ 8973, 17941) 148 3.99% 87.50%
[ 17941, 26909) 79 2.13% 89.63%
[ 26909, 35877) 36 0.97% 90.60%
[ 35877, 44844) 44 1.19% 91.78%
[ 44844, 53812) 17 0.46% 92.24%
[ 53812, 62780) 20 0.54% 92.78%
[ 62780, 71748) 39 1.05% 93.83%
[ 71748, 80715) 24 0.65% 94.48%
[ 80715, 89683) 12 0.32% 94.80%
[ 89683, 98651) 22 0.59% 95.39%
[ 98651, 107619) 21 0.57% 95.96%
[ 107619, 116586) 17 0.46% 96.42%
[ 116586, 125554) 17 0.46% 96.88%
[ 125554, 134522) 13 0.35% 97.23%
[ 134522, 143490) 8 0.22% 97.44%
[ 143490, 152457) 5 0.13% 97.58%
[ 152457, 161425) 6 0.16% 97.74%
[ 161425, 170393) 15 0.40% 98.14%
[ 170393, 179360] 69 1.86% 100.00%
Attribute in nodes:
785 : detailed_occupation_recode [CATEGORICAL]
668 : detailed_industry_recode [CATEGORICAL]
275 : capital_gains [NUMERICAL]
220 : dividends_from_stocks [NUMERICAL]
197 : capital_losses [NUMERICAL]
178 : education [CATEGORICAL]
128 : country_of_birth_mother [CATEGORICAL]
116 : country_of_birth_father [CATEGORICAL]
114 : age [NUMERICAL]
98 : wage_per_hour [NUMERICAL]
95 : state_of_previous_residence [CATEGORICAL]
78 : detailed_household_and_family_stat [CATEGORICAL]
67 : class_of_worker [CATEGORICAL]
65 : sex [CATEGORICAL]
65 : country_of_birth_self [CATEGORICAL]
60 : weeks_worked_in_year [NUMERICAL]
57 : tax_filer_stat [CATEGORICAL]
54 : num_persons_worked_for_employer [NUMERICAL]
30 : own_business_or_self_employed [CATEGORICAL]
26 : marital_stat [CATEGORICAL]
16 : member_of_a_labor_union [CATEGORICAL]
15 : major_industry_code [CATEGORICAL]
15 : full_or_part_time_employment_stat [CATEGORICAL]
15 : fill_inc_questionnaire_for_veteran's_admin [CATEGORICAL]
9 : hispanic_origin [CATEGORICAL]
7 : race [CATEGORICAL]
7 : major_occupation_code [CATEGORICAL]
1 : veterans_benefits [CATEGORICAL]
1 : region_of_previous_residence [CATEGORICAL]
1 : reason_for_unemployment [CATEGORICAL]
1 : migration_prev_res_in_sunbelt [CATEGORICAL]
1 : migration_code-change_in_reg [CATEGORICAL]
1 : detailed_household_summary_in_household [CATEGORICAL]
1 : citizenship [CATEGORICAL]
Attribute in nodes with depth <= 0:
33 : education [CATEGORICAL]
29 : capital_gains [NUMERICAL]
24 : capital_losses [NUMERICAL]
14 : dividends_from_stocks [NUMERICAL]
14 : detailed_household_and_family_stat [CATEGORICAL]
12 : wage_per_hour [NUMERICAL]
11 : weeks_worked_in_year [NUMERICAL]
11 : detailed_occupation_recode [CATEGORICAL]
11 : country_of_birth_self [CATEGORICAL]
10 : state_of_previous_residence [CATEGORICAL]
10 : age [NUMERICAL]
9 : fill_inc_questionnaire_for_veteran's_admin [CATEGORICAL]
8 : own_business_or_self_employed [CATEGORICAL]
8 : marital_stat [CATEGORICAL]
8 : full_or_part_time_employment_stat [CATEGORICAL]
8 : class_of_worker [CATEGORICAL]
6 : sex [CATEGORICAL]
5 : tax_filer_stat [CATEGORICAL]
4 : country_of_birth_father [CATEGORICAL]
3 : race [CATEGORICAL]
2 : hispanic_origin [CATEGORICAL]
2 : detailed_industry_recode [CATEGORICAL]
1 : reason_for_unemployment [CATEGORICAL]
1 : num_persons_worked_for_employer [NUMERICAL]
1 : country_of_birth_mother [CATEGORICAL]
Attribute in nodes with depth <= 1:
140 : detailed_occupation_recode [CATEGORICAL]
82 : capital_gains [NUMERICAL]
65 : capital_losses [NUMERICAL]
62 : education [CATEGORICAL]
59 : detailed_industry_recode [CATEGORICAL]
47 : dividends_from_stocks [NUMERICAL]
31 : wage_per_hour [NUMERICAL]
26 : detailed_household_and_family_stat [CATEGORICAL]
23 : age [NUMERICAL]
22 : state_of_previous_residence [CATEGORICAL]
21 : country_of_birth_self [CATEGORICAL]
21 : class_of_worker [CATEGORICAL]
20 : weeks_worked_in_year [NUMERICAL]
20 : sex [CATEGORICAL]
15 : country_of_birth_father [CATEGORICAL]
12 : own_business_or_self_employed [CATEGORICAL]
11 : fill_inc_questionnaire_for_veteran's_admin [CATEGORICAL]
10 : num_persons_worked_for_employer [NUMERICAL]
9 : tax_filer_stat [CATEGORICAL]
9 : full_or_part_time_employment_stat [CATEGORICAL]
8 : marital_stat [CATEGORICAL]
8 : country_of_birth_mother [CATEGORICAL]
6 : member_of_a_labor_union [CATEGORICAL]
5 : race [CATEGORICAL]
2 : hispanic_origin [CATEGORICAL]
1 : reason_for_unemployment [CATEGORICAL]
Attribute in nodes with depth <= 2:
399 : detailed_occupation_recode [CATEGORICAL]
249 : detailed_industry_recode [CATEGORICAL]
170 : capital_gains [NUMERICAL]
117 : dividends_from_stocks [NUMERICAL]
116 : capital_losses [NUMERICAL]
87 : education [CATEGORICAL]
59 : wage_per_hour [NUMERICAL]
45 : detailed_household_and_family_stat [CATEGORICAL]
43 : country_of_birth_father [CATEGORICAL]
43 : age [NUMERICAL]
40 : country_of_birth_self [CATEGORICAL]
38 : state_of_previous_residence [CATEGORICAL]
38 : class_of_worker [CATEGORICAL]
37 : sex [CATEGORICAL]
36 : weeks_worked_in_year [NUMERICAL]
33 : country_of_birth_mother [CATEGORICAL]
28 : num_persons_worked_for_employer [NUMERICAL]
26 : tax_filer_stat [CATEGORICAL]
14 : own_business_or_self_employed [CATEGORICAL]
14 : marital_stat [CATEGORICAL]
12 : full_or_part_time_employment_stat [CATEGORICAL]
12 : fill_inc_questionnaire_for_veteran's_admin [CATEGORICAL]
8 : member_of_a_labor_union [CATEGORICAL]
6 : race [CATEGORICAL]
6 : hispanic_origin [CATEGORICAL]
2 : major_occupation_code [CATEGORICAL]
2 : major_industry_code [CATEGORICAL]
1 : reason_for_unemployment [CATEGORICAL]
1 : migration_prev_res_in_sunbelt [CATEGORICAL]
1 : migration_code-change_in_reg [CATEGORICAL]
Attribute in nodes with depth <= 3:
785 : detailed_occupation_recode [CATEGORICAL]
668 : detailed_industry_recode [CATEGORICAL]
275 : capital_gains [NUMERICAL]
220 : dividends_from_stocks [NUMERICAL]
197 : capital_losses [NUMERICAL]
178 : education [CATEGORICAL]
128 : country_of_birth_mother [CATEGORICAL]
116 : country_of_birth_father [CATEGORICAL]
114 : age [NUMERICAL]
98 : wage_per_hour [NUMERICAL]
95 : state_of_previous_residence [CATEGORICAL]
78 : detailed_household_and_family_stat [CATEGORICAL]
67 : class_of_worker [CATEGORICAL]
65 : sex [CATEGORICAL]
65 : country_of_birth_self [CATEGORICAL]
60 : weeks_worked_in_year [NUMERICAL]
57 : tax_filer_stat [CATEGORICAL]
54 : num_persons_worked_for_employer [NUMERICAL]
30 : own_business_or_self_employed [CATEGORICAL]
26 : marital_stat [CATEGORICAL]
16 : member_of_a_labor_union [CATEGORICAL]
15 : major_industry_code [CATEGORICAL]
15 : full_or_part_time_employment_stat [CATEGORICAL]
15 : fill_inc_questionnaire_for_veteran's_admin [CATEGORICAL]
9 : hispanic_origin [CATEGORICAL]
7 : race [CATEGORICAL]
7 : major_occupation_code [CATEGORICAL]
1 : veterans_benefits [CATEGORICAL]
1 : region_of_previous_residence [CATEGORICAL]
1 : reason_for_unemployment [CATEGORICAL]
1 : migration_prev_res_in_sunbelt [CATEGORICAL]
1 : migration_code-change_in_reg [CATEGORICAL]
1 : detailed_household_summary_in_household [CATEGORICAL]
1 : citizenship [CATEGORICAL]
Attribute in nodes with depth <= 5:
785 : detailed_occupation_recode [CATEGORICAL]
668 : detailed_industry_recode [CATEGORICAL]
275 : capital_gains [NUMERICAL]
220 : dividends_from_stocks [NUMERICAL]
197 : capital_losses [NUMERICAL]
178 : education [CATEGORICAL]
128 : country_of_birth_mother [CATEGORICAL]
116 : country_of_birth_father [CATEGORICAL]
114 : age [NUMERICAL]
98 : wage_per_hour [NUMERICAL]
95 : state_of_previous_residence [CATEGORICAL]
78 : detailed_household_and_family_stat [CATEGORICAL]
67 : class_of_worker [CATEGORICAL]
65 : sex [CATEGORICAL]
65 : country_of_birth_self [CATEGORICAL]
60 : weeks_worked_in_year [NUMERICAL]
57 : tax_filer_stat [CATEGORICAL]
54 : num_persons_worked_for_employer [NUMERICAL]
30 : own_business_or_self_employed [CATEGORICAL]
26 : marital_stat [CATEGORICAL]
16 : member_of_a_labor_union [CATEGORICAL]
15 : major_industry_code [CATEGORICAL]
15 : full_or_part_time_employment_stat [CATEGORICAL]
15 : fill_inc_questionnaire_for_veteran's_admin [CATEGORICAL]
9 : hispanic_origin [CATEGORICAL]
7 : race [CATEGORICAL]
7 : major_occupation_code [CATEGORICAL]
1 : veterans_benefits [CATEGORICAL]
1 : region_of_previous_residence [CATEGORICAL]
1 : reason_for_unemployment [CATEGORICAL]
1 : migration_prev_res_in_sunbelt [CATEGORICAL]
1 : migration_code-change_in_reg [CATEGORICAL]
1 : detailed_household_summary_in_household [CATEGORICAL]
1 : citizenship [CATEGORICAL]
Condition type in nodes:
2418 : ContainsBitmapCondition
1018 : HigherCondition
31 : ContainsCondition
Condition type in nodes with depth <= 0:
137 : ContainsBitmapCondition
101 : HigherCondition
7 : ContainsCondition
Condition type in nodes with depth <= 1:
448 : ContainsBitmapCondition
278 : HigherCondition
9 : ContainsCondition
Condition type in nodes with depth <= 2:
1097 : ContainsBitmapCondition
569 : HigherCondition
17 : ContainsCondition
Condition type in nodes with depth <= 3:
2418 : ContainsBitmapCondition
1018 : HigherCondition
31 : ContainsCondition
Condition type in nodes with depth <= 5:
2418 : ContainsBitmapCondition
1018 : HigherCondition
31 : ContainsCondition
None
Target encoding is a common preprocessing technique for categorical features that convert them into numerical features. Using categorical features with high cardinality as-is may lead to overfitting. Target encoding aims to replace each categorical feature value with one or more numerical values that represent its co-occurrence with the target labels.
More precisely, given a categorical feature, the binary target encoder in this example will produce three new numerical features:
positive_frequency
: How many times each feature value occurred with a positive target label.negative_frequency
: How many times each feature value occurred with a negative target label.positive_probability
: The probability that the target label is positive,
given the feature value, which is computed as
positive_frequency / (positive_frequency + negative_frequency + correction)
.
The correction
term is added in to make the division more stable for rare categorical values.
The default value for correction
is 1.0.Note that target encoding is effective with models that cannot automatically learn dense representations to categorical features, such as decision forests or kernel methods. If neural network models are used, its recommended to encode categorical features as embeddings.
For simplicity, we assume that the inputs for the adapt
and call
methods
are in the expected data types and shapes, so no validation logic is added.
It is recommended to pass the vocabulary_size
of the categorical feature to the
BinaryTargetEncoding
constructor. If not specified, it will be computed during
the adapt()
method execution.
class BinaryTargetEncoding(layers.Layer):
def __init__(self, vocabulary_size=None, correction=1.0, **kwargs):
super().__init__(**kwargs)
self.vocabulary_size = vocabulary_size
self.correction = correction
def adapt(self, data):
# data is expected to be an integer numpy array to a Tensor shape [num_exmples, 2].
# This contains feature values for a given feature in the dataset, and target values.
# Convert the data to a tensor.
data = tf.convert_to_tensor(data)
# Separate the feature values and target values
feature_values = tf.cast(data[:, 0], tf.dtypes.int32)
target_values = tf.cast(data[:, 1], tf.dtypes.bool)
# Compute the vocabulary_size of not specified.
if self.vocabulary_size is None:
self.vocabulary_size = tf.unique(feature_values).y.shape[0]
# Filter the data where the target label is positive.
positive_indices = tf.where(condition=target_values)
positive_feature_values = tf.gather_nd(
params=feature_values, indices=positive_indices
)
# Compute how many times each feature value occurred with a positive target label.
positive_frequency = tf.math.unsorted_segment_sum(
data=tf.ones(
shape=(positive_feature_values.shape[0], 1), dtype=tf.dtypes.float64
),
segment_ids=positive_feature_values,
num_segments=self.vocabulary_size,
)
# Filter the data where the target label is negative.
negative_indices = tf.where(condition=tf.math.logical_not(target_values))
negative_feature_values = tf.gather_nd(
params=feature_values, indices=negative_indices
)
# Compute how many times each feature value occurred with a negative target label.
negative_frequency = tf.math.unsorted_segment_sum(
data=tf.ones(
shape=(negative_feature_values.shape[0], 1), dtype=tf.dtypes.float64
),
segment_ids=negative_feature_values,
num_segments=self.vocabulary_size,
)
# Compute positive probability for the input feature values.
positive_probability = positive_frequency / (
positive_frequency + negative_frequency + self.correction
)
# Concatenate the computed statistics for traget_encoding.
target_encoding_statistics = tf.cast(
tf.concat(
[positive_frequency, negative_frequency, positive_probability], axis=1
),
dtype=tf.dtypes.float32,
)
self.target_encoding_statistics = tf.constant(target_encoding_statistics)
def call(self, inputs):
# inputs is expected to be an integer numpy array to a Tensor shape [num_exmples, 1].
# This includes the feature values for a given feature in the dataset.
# Raise an error if the target encoding statistics are not computed.
if self.target_encoding_statistics == None:
raise ValueError(
f"You need to call the adapt method to compute target encoding statistics."
)
# Convert the inputs to a tensor.
inputs = tf.convert_to_tensor(inputs)
# Cast the inputs int64 a tensor.
inputs = tf.cast(inputs, tf.dtypes.int64)
# Lookup target encoding statistics for the input feature values.
target_encoding_statistics = tf.cast(
tf.gather_nd(self.target_encoding_statistics, inputs),
dtype=tf.dtypes.float32,
)
return target_encoding_statistics
Let's test the binary target encoder
data = tf.constant(
[
[0, 1],
[2, 0],
[0, 1],
[1, 1],
[1, 1],
[2, 0],
[1, 0],
[0, 1],
[2, 1],
[1, 0],
[0, 1],
[2, 0],
[0, 1],
[1, 1],
[1, 1],
[2, 0],
[1, 0],
[0, 1],
[2, 0],
]
)
binary_target_encoder = BinaryTargetEncoding()
binary_target_encoder.adapt(data)
print(binary_target_encoder([[0], [1], [2]]))
tf.Tensor(
[[6. 0. 0.85714287]
[4. 3. 0.5 ]
[1. 5. 0.14285715]], shape=(3, 3), dtype=float32)
def create_model_inputs():
inputs = {}
for feature_name in NUMERIC_FEATURE_NAMES:
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype=tf.float32
)
for feature_name in CATEGORICAL_FEATURE_NAMES:
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype=tf.string
)
return inputs
def create_target_encoder():
inputs = create_model_inputs()
target_values = train_data[[TARGET_COLUMN_NAME]].to_numpy()
encoded_features = []
for feature_name in inputs:
if feature_name in CATEGORICAL_FEATURE_NAMES:
# Get the vocabulary of the categorical feature.
vocabulary = sorted(
[str(value) for value in list(train_data[feature_name].unique())]
)
# Create a lookup to convert string values to an integer indices.
# Since we are not using a mask token nor expecting any out of vocabulary
# (oov) token, we set mask_token to None and num_oov_indices to 0.
lookup = layers.StringLookup(
vocabulary=vocabulary, mask_token=None, num_oov_indices=0
)
# Convert the string input values into integer indices.
value_indices = lookup(inputs[feature_name])
# Prepare the data to adapt the target encoding.
print("### Adapting target encoding for:", feature_name)
feature_values = train_data[[feature_name]].to_numpy().astype(str)
feature_value_indices = lookup(feature_values)
data = tf.concat([feature_value_indices, target_values], axis=1)
feature_encoder = BinaryTargetEncoding()
feature_encoder.adapt(data)
# Convert the feature value indices to target encoding representations.
encoded_feature = feature_encoder(tf.expand_dims(value_indices, -1))
else:
# Expand the dimensions of the numerical input feature and use it as-is.
encoded_feature = tf.expand_dims(inputs[feature_name], -1)
# Add the encoded feature to the list.
encoded_features.append(encoded_feature)
# Concatenate all the encoded features.
encoded_features = tf.concat(encoded_features, axis=1)
# Create and return a Keras model with encoded features as outputs.
return keras.Model(inputs=inputs, outputs=encoded_features)
In this scenario, we use the target encoding as a preprocessor for the Gradient Boosted Tree model, and let the model infer semantics of the input features.
def create_gbt_with_preprocessor(preprocessor):
gbt_model = tfdf.keras.GradientBoostedTreesModel(
preprocessing=preprocessor,
num_trees=NUM_TREES,
max_depth=MAX_DEPTH,
min_examples=MIN_EXAMPLES,
subsample=SUBSAMPLE,
validation_ratio=VALIDATION_RATIO,
task=tfdf.keras.Task.CLASSIFICATION,
)
gbt_model.compile(metrics=[keras.metrics.BinaryAccuracy(name="accuracy")])
return gbt_model
gbt_model = create_gbt_with_preprocessor(create_target_encoder())
run_experiment(gbt_model, train_data, test_data)
### Adapting target encoding for: class_of_worker
### Adapting target encoding for: detailed_industry_recode
### Adapting target encoding for: detailed_occupation_recode
### Adapting target encoding for: education
### Adapting target encoding for: enroll_in_edu_inst_last_wk
### Adapting target encoding for: marital_stat
### Adapting target encoding for: major_industry_code
### Adapting target encoding for: major_occupation_code
### Adapting target encoding for: race
### Adapting target encoding for: hispanic_origin
### Adapting target encoding for: sex
### Adapting target encoding for: member_of_a_labor_union
### Adapting target encoding for: reason_for_unemployment
### Adapting target encoding for: full_or_part_time_employment_stat
### Adapting target encoding for: tax_filer_stat
### Adapting target encoding for: region_of_previous_residence
### Adapting target encoding for: state_of_previous_residence
### Adapting target encoding for: detailed_household_and_family_stat
### Adapting target encoding for: detailed_household_summary_in_household
### Adapting target encoding for: migration_code-change_in_msa
### Adapting target encoding for: migration_code-change_in_reg
### Adapting target encoding for: migration_code-move_within_reg
### Adapting target encoding for: live_in_this_house_1_year_ago
### Adapting target encoding for: migration_prev_res_in_sunbelt
### Adapting target encoding for: family_members_under_18
### Adapting target encoding for: country_of_birth_father
### Adapting target encoding for: country_of_birth_mother
### Adapting target encoding for: country_of_birth_self
### Adapting target encoding for: citizenship
### Adapting target encoding for: own_business_or_self_employed
### Adapting target encoding for: fill_inc_questionnaire_for_veteran's_admin
### Adapting target encoding for: veterans_benefits
### Adapting target encoding for: year
Use /tmp/tmpj_0h78ld as temporary training directory
Starting reading the dataset
198/200 [============================>.] - ETA: 0s
Dataset read in 0:00:06.793717
Training model
Model trained in 0:04:32.752691
Compiling model
200/200 [==============================] - 280s 1s/step
Test accuracy: 95.81%
In this scenario, we build an encoder model that codes the categorical features to embeddings, where the size of the embedding for a given categorical feature is the square root to the size of its vocabulary.
We train these embeddings in a simple NN model through backpropagation. After the embedding encoder is trained, we used it as a preprocessor to the input features of a Gradient Boosted Tree model.
Note that the embeddings and a decision forest model cannot be trained synergically in one phase, since decision forest models do not train with backpropagation. Rather, embeddings has to be trained in an initial phase, and then used as static inputs to the decision forest model.
def create_embedding_encoder(size=None):
inputs = create_model_inputs()
encoded_features = []
for feature_name in inputs:
if feature_name in CATEGORICAL_FEATURE_NAMES:
# Get the vocabulary of the categorical feature.
vocabulary = sorted(
[str(value) for value in list(train_data[feature_name].unique())]
)
# Create a lookup to convert string values to an integer indices.
# Since we are not using a mask token nor expecting any out of vocabulary
# (oov) token, we set mask_token to None and num_oov_indices to 0.
lookup = layers.StringLookup(
vocabulary=vocabulary, mask_token=None, num_oov_indices=0
)
# Convert the string input values into integer indices.
value_index = lookup(inputs[feature_name])
# Create an embedding layer with the specified dimensions
vocabulary_size = len(vocabulary)
embedding_size = int(math.sqrt(vocabulary_size))
feature_encoder = layers.Embedding(
input_dim=len(vocabulary), output_dim=embedding_size
)
# Convert the index values to embedding representations.
encoded_feature = feature_encoder(value_index)
else:
# Expand the dimensions of the numerical input feature and use it as-is.
encoded_feature = tf.expand_dims(inputs[feature_name], -1)
# Add the encoded feature to the list.
encoded_features.append(encoded_feature)
# Concatenate all the encoded features.
encoded_features = layers.concatenate(encoded_features, axis=1)
# Apply dropout.
encoded_features = layers.Dropout(rate=0.25)(encoded_features)
# Perform non-linearity projection.
encoded_features = layers.Dense(
units=size if size else encoded_features.shape[-1], activation="gelu"
)(encoded_features)
# Create and return a Keras model with encoded features as outputs.
return keras.Model(inputs=inputs, outputs=encoded_features)
def create_nn_model(encoder):
inputs = create_model_inputs()
embeddings = encoder(inputs)
output = layers.Dense(units=1, activation="sigmoid")(embeddings)
nn_model = keras.Model(inputs=inputs, outputs=output)
nn_model.compile(
optimizer=keras.optimizers.Adam(),
loss=keras.losses.BinaryCrossentropy(),
metrics=[keras.metrics.BinaryAccuracy("accuracy")],
)
return nn_model
embedding_encoder = create_embedding_encoder(size=64)
run_experiment(
create_nn_model(embedding_encoder),
train_data,
test_data,
num_epochs=5,
batch_size=256,
)
Epoch 1/5
200/200 [==============================] - 10s 27ms/step - loss: 8303.1455 - accuracy: 0.9193
Epoch 2/5
200/200 [==============================] - 5s 27ms/step - loss: 1019.4900 - accuracy: 0.9371
Epoch 3/5
200/200 [==============================] - 5s 27ms/step - loss: 612.2844 - accuracy: 0.9416
Epoch 4/5
200/200 [==============================] - 5s 27ms/step - loss: 858.9774 - accuracy: 0.9397
Epoch 5/5
200/200 [==============================] - 5s 26ms/step - loss: 842.3922 - accuracy: 0.9421
Test accuracy: 95.0%
gbt_model = create_gbt_with_preprocessor(embedding_encoder)
run_experiment(gbt_model, train_data, test_data)
Use /tmp/tmpao5o88p6 as temporary training directory
Starting reading the dataset
199/200 [============================>.] - ETA: 0s
Dataset read in 0:00:06.722677
Training model
Model trained in 0:05:18.350298
Compiling model
200/200 [==============================] - 325s 2s/step
Test accuracy: 95.82%
TensorFlow Decision Forests provide powerful models, especially with structured data. In our experiments, the Gradient Boosted Tree model achieved 95.79% test accuracy. When using the target encoding with categorical feature, the same model achieved 95.81% test accuracy. When pretraining embeddings to be used as inputs to the Gradient Boosted Tree model, we achieved 95.82% test accuracy.
Decision Forests can be used with Neural Networks, either by 1) using Neural Networks to learn useful representation of the input data, and then using Decision Forests for the supervised learning task, or by 2) creating an ensemble of both Decision Forests and Neural Network models.
Note that TensorFlow Decision Forests does not (yet) support hardware accelerators. All training and inference is done on the CPU. Besides, Decision Forests require a finite dataset that fits in memory for their training procedures. However, there are diminishing returns for increasing the size of the dataset, and Decision Forests algorithms arguably need fewer examples for convergence than large Neural Network models.