Author: Khalid Salama
Date created: 2021/02/10
Last modified: 2021/02/10
Description: Using Gated Residual and Variable Selection Networks for income level prediction.
This example demonstrates the use of Gated Residual Networks (GRN) and Variable Selection Networks (VSN), proposed by Bryan Lim et al. in Temporal Fusion Transformers (TFT) for Interpretable Multi-horizon Time Series Forecasting, for structured data classification. GRNs give the flexibility to the model to apply non-linear processing only where needed. VSNs allow the model to softly remove any unnecessary noisy inputs which could negatively impact performance. Together, those techniques help improving the learning capacity of deep neural network models.
Note that this example implements only the GRN and VSN components described in in the paper, rather than the whole TFT model, as GRN and VSN can be useful on their own for structured data learning tasks.
To run the code you need to use TensorFlow 2.3 or higher.
This example uses the United States Census Income Dataset provided by the UC Irvine Machine Learning Repository. The task is binary classification to determine whether a person makes over 50K a year.
The dataset includes ~300K instances with 41 input features: 7 numerical features and 34 categorical features.
import math
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
First we load the data from the UCI Machine Learning Repository into a Pandas DataFrame.
# Column names.
CSV_HEADER = [
"age",
"class_of_worker",
"detailed_industry_recode",
"detailed_occupation_recode",
"education",
"wage_per_hour",
"enroll_in_edu_inst_last_wk",
"marital_stat",
"major_industry_code",
"major_occupation_code",
"race",
"hispanic_origin",
"sex",
"member_of_a_labor_union",
"reason_for_unemployment",
"full_or_part_time_employment_stat",
"capital_gains",
"capital_losses",
"dividends_from_stocks",
"tax_filer_stat",
"region_of_previous_residence",
"state_of_previous_residence",
"detailed_household_and_family_stat",
"detailed_household_summary_in_household",
"instance_weight",
"migration_code-change_in_msa",
"migration_code-change_in_reg",
"migration_code-move_within_reg",
"live_in_this_house_1_year_ago",
"migration_prev_res_in_sunbelt",
"num_persons_worked_for_employer",
"family_members_under_18",
"country_of_birth_father",
"country_of_birth_mother",
"country_of_birth_self",
"citizenship",
"own_business_or_self_employed",
"fill_inc_questionnaire_for_veterans_admin",
"veterans_benefits",
"weeks_worked_in_year",
"year",
"income_level",
]
data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income.data.gz"
data = pd.read_csv(data_url, header=None, names=CSV_HEADER)
test_data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income.test.gz"
test_data = pd.read_csv(test_data_url, header=None, names=CSV_HEADER)
print(f"Data shape: {data.shape}")
print(f"Test data shape: {test_data.shape}")
Data shape: (199523, 42)
Test data shape: (99762, 42)
We convert the target column from string to integer.
data["income_level"] = data["income_level"].apply(
lambda x: 0 if x == " - 50000." else 1
)
test_data["income_level"] = test_data["income_level"].apply(
lambda x: 0 if x == " - 50000." else 1
)
Then, We split the dataset into train and validation sets.
random_selection = np.random.rand(len(data.index)) <= 0.85
train_data = data[random_selection]
valid_data = data[~random_selection]
Finally we store the train and test data splits locally to CSV files.
train_data_file = "train_data.csv"
valid_data_file = "valid_data.csv"
test_data_file = "test_data.csv"
train_data.to_csv(train_data_file, index=False, header=False)
valid_data.to_csv(valid_data_file, index=False, header=False)
test_data.to_csv(test_data_file, index=False, header=False)
Here, we define the metadata of the dataset that will be useful for reading and parsing the data into input features, and encoding the input features with respect to their types.
# Target feature name.
TARGET_FEATURE_NAME = "income_level"
# Weight column name.
WEIGHT_COLUMN_NAME = "instance_weight"
# Numeric feature names.
NUMERIC_FEATURE_NAMES = [
"age",
"wage_per_hour",
"capital_gains",
"capital_losses",
"dividends_from_stocks",
"num_persons_worked_for_employer",
"weeks_worked_in_year",
]
# Categorical features and their vocabulary lists.
# Note that we add 'v=' as a prefix to all categorical feature values to make
# sure that they are treated as strings.
CATEGORICAL_FEATURES_WITH_VOCABULARY = {
feature_name: sorted([str(value) for value in list(data[feature_name].unique())])
for feature_name in CSV_HEADER
if feature_name
not in list(NUMERIC_FEATURE_NAMES + [WEIGHT_COLUMN_NAME, TARGET_FEATURE_NAME])
}
# All features names.
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + list(
CATEGORICAL_FEATURES_WITH_VOCABULARY.keys()
)
# Feature default values.
COLUMN_DEFAULTS = [
[0.0]
if feature_name in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME, WEIGHT_COLUMN_NAME]
else ["NA"]
for feature_name in CSV_HEADER
]
tf.data.Dataset
for training and evaluationWe create an input function to read and parse the file, and convert features and
labels into a [tf.data.Dataset
](https://www.tensorflow.org/api_docs/python/tf/data/Dataset) for
training and evaluation.
from tensorflow.keras.layers import StringLookup
def process(features, target):
for feature_name in features:
if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
# Cast categorical feature values to string.
features[feature_name] = tf.cast(features[feature_name], tf.dtypes.string)
# Get the instance weight.
weight = features.pop(WEIGHT_COLUMN_NAME)
return features, target, weight
def get_dataset_from_csv(csv_file_path, shuffle=False, batch_size=128):
dataset = tf.data.experimental.make_csv_dataset(
csv_file_path,
batch_size=batch_size,
column_names=CSV_HEADER,
column_defaults=COLUMN_DEFAULTS,
label_name=TARGET_FEATURE_NAME,
num_epochs=1,
header=False,
shuffle=shuffle,
).map(process)
return dataset
def create_model_inputs():
inputs = {}
for feature_name in FEATURE_NAMES:
if feature_name in NUMERIC_FEATURE_NAMES:
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype=tf.float32
)
else:
inputs[feature_name] = layers.Input(
name=feature_name, shape=(), dtype=tf.string
)
return inputs
For categorical features, we encode them using layers.Embedding
using the
encoding_size
as the embedding dimensions. For the numerical features,
we apply linear transformation using layers.Dense
to project each feature into
encoding_size
-dimensional vector. Thus, all the encoded features will have the
same dimensionality.
def encode_inputs(inputs, encoding_size):
encoded_features = []
for feature_name in inputs:
if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY:
vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
# Create a lookup to convert a string values to an integer indices.
# Since we are not using a mask token nor expecting any out of vocabulary
# (oov) token, we set mask_token to None and num_oov_indices to 0.
index = StringLookup(
vocabulary=vocabulary, mask_token=None, num_oov_indices=0
)
# Convert the string input values into integer indices.
value_index = index(inputs[feature_name])
# Create an embedding layer with the specified dimensions
embedding_ecoder = layers.Embedding(
input_dim=len(vocabulary), output_dim=encoding_size
)
# Convert the index values to embedding representations.
encoded_feature = embedding_ecoder(value_index)
else:
# Project the numeric feature to encoding_size using linear transformation.
encoded_feature = tf.expand_dims(inputs[feature_name], -1)
encoded_feature = layers.Dense(units=encoding_size)(encoded_feature)
encoded_features.append(encoded_feature)
return encoded_features
Gated Linear Units (GLUs) provide the flexibility to suppress input that are not relevant for a given task.
class GatedLinearUnit(layers.Layer):
def __init__(self, units):
super().__init__()
self.linear = layers.Dense(units)
self.sigmoid = layers.Dense(units, activation="sigmoid")
def call(self, inputs):
return self.linear(inputs) * self.sigmoid(inputs)
The Gated Residual Network (GRN) works as follows:
class GatedResidualNetwork(layers.Layer):
def __init__(self, units, dropout_rate):
super().__init__()
self.units = units
self.elu_dense = layers.Dense(units, activation="elu")
self.linear_dense = layers.Dense(units)
self.dropout = layers.Dropout(dropout_rate)
self.gated_linear_unit = GatedLinearUnit(units)
self.layer_norm = layers.LayerNormalization()
self.project = layers.Dense(units)
def call(self, inputs):
x = self.elu_dense(inputs)
x = self.linear_dense(x)
x = self.dropout(x)
if inputs.shape[-1] != self.units:
inputs = self.project(inputs)
x = inputs + self.gated_linear_unit(x)
x = self.layer_norm(x)
return x
The Variable Selection Network (VSN) works as follows:
Note that the output of the VSN is [batch_size, encoding_size], regardless of the number of the input features.
class VariableSelection(layers.Layer):
def __init__(self, num_features, units, dropout_rate):
super().__init__()
self.grns = list()
# Create a GRN for each feature independently
for idx in range(num_features):
grn = GatedResidualNetwork(units, dropout_rate)
self.grns.append(grn)
# Create a GRN for the concatenation of all the features
self.grn_concat = GatedResidualNetwork(units, dropout_rate)
self.softmax = layers.Dense(units=num_features, activation="softmax")
def call(self, inputs):
v = layers.concatenate(inputs)
v = self.grn_concat(v)
v = tf.expand_dims(self.softmax(v), axis=-1)
x = []
for idx, input in enumerate(inputs):
x.append(self.grns[idx](input))
x = tf.stack(x, axis=1)
outputs = tf.squeeze(tf.matmul(v, x, transpose_a=True), axis=1)
return outputs
def create_model(encoding_size):
inputs = create_model_inputs()
feature_list = encode_inputs(inputs, encoding_size)
num_features = len(feature_list)
features = VariableSelection(num_features, encoding_size, dropout_rate)(
feature_list
)
outputs = layers.Dense(units=1, activation="sigmoid")(features)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
learning_rate = 0.001
dropout_rate = 0.15
batch_size = 265
num_epochs = 20
encoding_size = 16
model = create_model(encoding_size)
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=learning_rate),
loss=keras.losses.BinaryCrossentropy(),
metrics=[keras.metrics.BinaryAccuracy(name="accuracy")],
)
# Create an early stopping callback.
early_stopping = tf.keras.callbacks.EarlyStopping(
monitor="val_loss", patience=5, restore_best_weights=True
)
print("Start training the model...")
train_dataset = get_dataset_from_csv(
train_data_file, shuffle=True, batch_size=batch_size
)
valid_dataset = get_dataset_from_csv(valid_data_file, batch_size=batch_size)
model.fit(
train_dataset,
epochs=num_epochs,
validation_data=valid_dataset,
callbacks=[early_stopping],
)
print("Model training finished.")
print("Evaluating model performance...")
test_dataset = get_dataset_from_csv(test_data_file, batch_size=batch_size)
_, accuracy = model.evaluate(test_dataset)
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
Start training the model...
Epoch 1/20
640/640 [==============================] - 31s 29ms/step - loss: 253.8570 - accuracy: 0.9468 - val_loss: 229.4024 - val_accuracy: 0.9495
Epoch 2/20
640/640 [==============================] - 17s 25ms/step - loss: 229.9359 - accuracy: 0.9497 - val_loss: 223.4970 - val_accuracy: 0.9505
Epoch 3/20
640/640 [==============================] - 17s 25ms/step - loss: 225.5644 - accuracy: 0.9504 - val_loss: 222.0078 - val_accuracy: 0.9515
Epoch 4/20
640/640 [==============================] - 16s 25ms/step - loss: 222.2086 - accuracy: 0.9512 - val_loss: 218.2707 - val_accuracy: 0.9522
Epoch 5/20
640/640 [==============================] - 17s 25ms/step - loss: 218.0359 - accuracy: 0.9523 - val_loss: 217.3721 - val_accuracy: 0.9528
Epoch 6/20
640/640 [==============================] - 17s 26ms/step - loss: 214.8348 - accuracy: 0.9529 - val_loss: 210.3546 - val_accuracy: 0.9543
Epoch 7/20
640/640 [==============================] - 17s 26ms/step - loss: 213.0984 - accuracy: 0.9534 - val_loss: 210.2881 - val_accuracy: 0.9544
Epoch 8/20
640/640 [==============================] - 17s 26ms/step - loss: 211.6379 - accuracy: 0.9538 - val_loss: 209.3327 - val_accuracy: 0.9550
Epoch 9/20
640/640 [==============================] - 17s 26ms/step - loss: 210.7283 - accuracy: 0.9541 - val_loss: 209.5862 - val_accuracy: 0.9543
Epoch 10/20
640/640 [==============================] - 17s 26ms/step - loss: 209.9062 - accuracy: 0.9538 - val_loss: 210.1662 - val_accuracy: 0.9537
Epoch 11/20
640/640 [==============================] - 16s 25ms/step - loss: 209.6323 - accuracy: 0.9540 - val_loss: 207.9528 - val_accuracy: 0.9552
Epoch 12/20
640/640 [==============================] - 16s 25ms/step - loss: 208.7843 - accuracy: 0.9544 - val_loss: 207.5303 - val_accuracy: 0.9550
Epoch 13/20
640/640 [==============================] - 21s 32ms/step - loss: 207.9983 - accuracy: 0.9544 - val_loss: 206.8800 - val_accuracy: 0.9557
Epoch 14/20
640/640 [==============================] - 18s 28ms/step - loss: 207.2104 - accuracy: 0.9544 - val_loss: 216.0859 - val_accuracy: 0.9535
Epoch 15/20
640/640 [==============================] - 16s 25ms/step - loss: 207.2254 - accuracy: 0.9543 - val_loss: 206.7765 - val_accuracy: 0.9555
Epoch 16/20
640/640 [==============================] - 16s 25ms/step - loss: 206.6704 - accuracy: 0.9546 - val_loss: 206.7508 - val_accuracy: 0.9560
Epoch 17/20
640/640 [==============================] - 19s 30ms/step - loss: 206.1322 - accuracy: 0.9545 - val_loss: 205.9638 - val_accuracy: 0.9562
Epoch 18/20
640/640 [==============================] - 21s 31ms/step - loss: 205.4764 - accuracy: 0.9545 - val_loss: 206.0258 - val_accuracy: 0.9561
Epoch 19/20
640/640 [==============================] - 16s 25ms/step - loss: 204.3614 - accuracy: 0.9550 - val_loss: 207.1424 - val_accuracy: 0.9560
Epoch 20/20
640/640 [==============================] - 16s 25ms/step - loss: 203.9543 - accuracy: 0.9550 - val_loss: 206.4697 - val_accuracy: 0.9554
Model training finished.
Evaluating model performance...
377/377 [==============================] - 4s 11ms/step - loss: 204.5099 - accuracy: 0.9547
Test accuracy: 95.47%
You should achieve more than 95% accuracy on the test set.
To increase the learning capacity of the model, you can try increasing the
encoding_size
value, or stacking multiple GRN layers on top of the VSN layer.
This may require to also increase the dropout_rate
value to avoid overfitting.
Example available on HuggingFace
Trained Model | Demo |
---|---|