â–º Code examples / Natural Language Processing / Text classification with Transformer

Text classification with Transformer

Author: Apoorv Nandan
Date created: 2020/05/10
Last modified: 2024/01/18
Description: Implement a Transformer block as a Keras layer and use it for text classification.

ⓘ This example uses Keras 3

View in Colab • GitHub source


Setup

import keras
from keras import ops
from keras import layers

Implement a Transformer block as a layer

class TransformerBlock(layers.Layer):
    def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
        super().__init__()
        self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
        self.ffn = keras.Sequential(
            [layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),]
        )
        self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = layers.Dropout(rate)
        self.dropout2 = layers.Dropout(rate)

    def call(self, inputs):
        attn_output = self.att(inputs, inputs)
        attn_output = self.dropout1(attn_output)
        out1 = self.layernorm1(inputs + attn_output)
        ffn_output = self.ffn(out1)
        ffn_output = self.dropout2(ffn_output)
        return self.layernorm2(out1 + ffn_output)

Implement embedding layer

Two separate embedding layers, one for tokens, one for token index (positions).

class TokenAndPositionEmbedding(layers.Layer):
    def __init__(self, maxlen, vocab_size, embed_dim):
        super().__init__()
        self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)
        self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)

    def call(self, x):
        maxlen = ops.shape(x)[-1]
        positions = ops.arange(start=0, stop=maxlen, step=1)
        positions = self.pos_emb(positions)
        x = self.token_emb(x)
        return x + positions

Download and prepare dataset

vocab_size = 20000  # Only consider the top 20k words
maxlen = 200  # Only consider the first 200 words of each movie review
(x_train, y_train), (x_val, y_val) = keras.datasets.imdb.load_data(num_words=vocab_size)
print(len(x_train), "Training sequences")
print(len(x_val), "Validation sequences")
x_train = keras.utils.pad_sequences(x_train, maxlen=maxlen)
x_val = keras.utils.pad_sequences(x_val, maxlen=maxlen)
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/imdb.npz
17465344/17464789 [==============================] - 0s 0us/step

<string>:6: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/datasets/imdb.py:159: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
  x_train, y_train = np.array(xs[:idx]), np.array(labels[:idx])
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/datasets/imdb.py:160: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
  x_test, y_test = np.array(xs[idx:]), np.array(labels[idx:])

25000 Training sequences
25000 Validation sequences

Create classifier model using transformer layer

Transformer layer outputs one vector for each time step of our input sequence. Here, we take the mean across all time steps and use a feed forward network on top of it to classify text.

embed_dim = 32  # Embedding size for each token
num_heads = 2  # Number of attention heads
ff_dim = 32  # Hidden layer size in feed forward network inside transformer

inputs = layers.Input(shape=(maxlen,))
embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)
x = embedding_layer(inputs)
transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)
x = transformer_block(x)
x = layers.GlobalAveragePooling1D()(x)
x = layers.Dropout(0.1)(x)
x = layers.Dense(20, activation="relu")(x)
x = layers.Dropout(0.1)(x)
outputs = layers.Dense(2, activation="softmax")(x)

model = keras.Model(inputs=inputs, outputs=outputs)

Train and Evaluate

model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
history = model.fit(
    x_train, y_train, batch_size=32, epochs=2, validation_data=(x_val, y_val)
)
Epoch 1/2
782/782 [==============================] - 15s 18ms/step - loss: 0.5112 - accuracy: 0.7070 - val_loss: 0.3598 - val_accuracy: 0.8444
Epoch 2/2
782/782 [==============================] - 13s 17ms/step - loss: 0.1942 - accuracy: 0.9297 - val_loss: 0.2977 - val_accuracy: 0.8745