โ–บ Code examples / Natural Language Processing / Using pre-trained word embeddings

Using pre-trained word embeddings

Author: fchollet
Date created: 2020/05/05
Last modified: 2020/05/05
Description: Text classification on the Newsgroup20 dataset using pre-trained GloVe word embeddings.

โ“˜ This example uses Keras 3

View in Colab โ€ข GitHub source


Setup

import os

# Only the TensorFlow backend supports string inputs.
os.environ["KERAS_BACKEND"] = "tensorflow"

import pathlib
import numpy as np
import tensorflow.data as tf_data
import keras
from keras import layers

Introduction

In this example, we show how to train a text classification model that uses pre-trained word embeddings.

We'll work with the Newsgroup20 dataset, a set of 20,000 message board messages belonging to 20 different topic categories.

For the pre-trained word embeddings, we'll use GloVe embeddings.


Download the Newsgroup20 data

data_path = keras.utils.get_file(
    "news20.tar.gz",
    "http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.tar.gz",
    untar=True,
)

Let's take a look at the data

data_dir = pathlib.Path(data_path).parent / "20_newsgroup"
dirnames = os.listdir(data_dir)
print("Number of directories:", len(dirnames))
print("Directory names:", dirnames)

fnames = os.listdir(data_dir / "comp.graphics")
print("Number of files in comp.graphics:", len(fnames))
print("Some example filenames:", fnames[:5])
Number of directories: 20
Directory names: ['comp.sys.ibm.pc.hardware', 'comp.os.ms-windows.misc', 'comp.windows.x', 'sci.space', 'sci.crypt', 'sci.med', 'alt.atheism', 'rec.autos', 'rec.sport.hockey', 'talk.politics.misc', 'talk.politics.mideast', 'rec.motorcycles', 'talk.politics.guns', 'misc.forsale', 'sci.electronics', 'talk.religion.misc', 'comp.graphics', 'soc.religion.christian', 'comp.sys.mac.hardware', 'rec.sport.baseball']
Number of files in comp.graphics: 1000
Some example filenames: ['39638', '38747', '38242', '39057', '39031']

Here's a example of what one file contains:

print(open(data_dir / "comp.graphics" / "38987").read())
Newsgroups: comp.graphics
Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard.edu!noc.near.net!howland.reston.ans.net!agate!dog.ee.lbl.gov!network.ucsd.edu!usc!rpi!nason110.its.rpi.edu!mabusj
From: mabusj@nason110.its.rpi.edu (Jasen M. Mabus)
Subject: Looking for Brain in CAD
Message-ID: <c285m+p@rpi.edu>
Nntp-Posting-Host: nason110.its.rpi.edu
Reply-To: mabusj@rpi.edu
Organization: Rensselaer Polytechnic Institute, Troy, NY.
Date: Thu, 29 Apr 1993 23:27:20 GMT
Lines: 7
Jasen Mabus
RPI student
    I am looking for a hman brain in any CAD (.dxf,.cad,.iges,.cgm,etc.) or picture (.gif,.jpg,.ras,etc.) format for an animation demonstration. If any has or knows of a location please reply by e-mail to mabusj@rpi.edu.
Thank you in advance,
Jasen Mabus  

As you can see, there are header lines that are leaking the file's category, either explicitly (the first line is literally the category name), or implicitly, e.g. via the Organization filed. Let's get rid of the headers:

samples = []
labels = []
class_names = []
class_index = 0
for dirname in sorted(os.listdir(data_dir)):
    class_names.append(dirname)
    dirpath = data_dir / dirname
    fnames = os.listdir(dirpath)
    print("Processing %s, %d files found" % (dirname, len(fnames)))
    for fname in fnames:
        fpath = dirpath / fname
        f = open(fpath, encoding="latin-1")
        content = f.read()
        lines = content.split("\n")
        lines = lines[10:]
        content = "\n".join(lines)
        samples.append(content)
        labels.append(class_index)
    class_index += 1

print("Classes:", class_names)
print("Number of samples:", len(samples))
Processing alt.atheism, 1000 files found
Processing comp.graphics, 1000 files found
Processing comp.os.ms-windows.misc, 1000 files found
Processing comp.sys.ibm.pc.hardware, 1000 files found
Processing comp.sys.mac.hardware, 1000 files found
Processing comp.windows.x, 1000 files found
Processing misc.forsale, 1000 files found
Processing rec.autos, 1000 files found
Processing rec.motorcycles, 1000 files found
Processing rec.sport.baseball, 1000 files found
Processing rec.sport.hockey, 1000 files found
Processing sci.crypt, 1000 files found
Processing sci.electronics, 1000 files found
Processing sci.med, 1000 files found
Processing sci.space, 1000 files found
Processing soc.religion.christian, 997 files found
Processing talk.politics.guns, 1000 files found
Processing talk.politics.mideast, 1000 files found
Processing talk.politics.misc, 1000 files found
Processing talk.religion.misc, 1000 files found
Classes: ['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']
Number of samples: 19997

There's actually one category that doesn't have the expected number of files, but the difference is small enough that the problem remains a balanced classification problem.


Shuffle and split the data into training & validation sets

# Shuffle the data
seed = 1337
rng = np.random.RandomState(seed)
rng.shuffle(samples)
rng = np.random.RandomState(seed)
rng.shuffle(labels)

# Extract a training & validation split
validation_split = 0.2
num_validation_samples = int(validation_split * len(samples))
train_samples = samples[:-num_validation_samples]
val_samples = samples[-num_validation_samples:]
train_labels = labels[:-num_validation_samples]
val_labels = labels[-num_validation_samples:]

Create a vocabulary index

Let's use the TextVectorization to index the vocabulary found in the dataset. Later, we'll use the same layer instance to vectorize the samples.

Our layer will only consider the top 20,000 words, and will truncate or pad sequences to be actually 200 tokens long.

vectorizer = layers.TextVectorization(max_tokens=20000, output_sequence_length=200)
text_ds = tf_data.Dataset.from_tensor_slices(train_samples).batch(128)
vectorizer.adapt(text_ds)

You can retrieve the computed vocabulary used via vectorizer.get_vocabulary(). Let's print the top 5 words:

vectorizer.get_vocabulary()[:5]
['', '[UNK]', 'the', 'to', 'of']

Let's vectorize a test sentence:

output = vectorizer([["the cat sat on the mat"]])
output.numpy()[0, :6]
array([   2, 3480, 1818,   15,    2, 5830])

As you can see, "the" gets represented as "2". Why not 0, given that "the" was the first word in the vocabulary? That's because index 0 is reserved for padding and index 1 is reserved for "out of vocabulary" tokens.

Here's a dict mapping words to their indices:

voc = vectorizer.get_vocabulary()
word_index = dict(zip(voc, range(len(voc))))

As you can see, we obtain the same encoding as above for our test sentence:

test = ["the", "cat", "sat", "on", "the", "mat"]
[word_index[w] for w in test]
[2, 3480, 1818, 15, 2, 5830]

Load pre-trained word embeddings

Let's download pre-trained GloVe embeddings (a 822M zip file).

You'll need to run the following commands:

!wget https://downloads.cs.stanford.edu/nlp/data/glove.6B.zip
!unzip -q glove.6B.zip
--2023-11-19 22:45:27--  https://downloads.cs.stanford.edu/nlp/data/glove.6B.zip
Resolving downloads.cs.stanford.edu (downloads.cs.stanford.edu)... 171.64.64.22
Connecting to downloads.cs.stanford.edu (downloads.cs.stanford.edu)|171.64.64.22|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 862182613 (822M) [application/zip]
Saving to: โ€˜glove.6B.zipโ€™
glove.6B.zip        100%[===================>] 822.24M  5.05MB/s    in 2m 39s  
2023-11-19 22:48:06 (5.19 MB/s) - โ€˜glove.6B.zipโ€™ saved [862182613/862182613]

The archive contains text-encoded vectors of various sizes: 50-dimensional, 100-dimensional, 200-dimensional, 300-dimensional. We'll use the 100D ones.

Let's make a dict mapping words (strings) to their NumPy vector representation:

path_to_glove_file = "glove.6B.100d.txt"

embeddings_index = {}
with open(path_to_glove_file) as f:
    for line in f:
        word, coefs = line.split(maxsplit=1)
        coefs = np.fromstring(coefs, "f", sep=" ")
        embeddings_index[word] = coefs

print("Found %s word vectors." % len(embeddings_index))
Found 400000 word vectors.

Now, let's prepare a corresponding embedding matrix that we can use in a Keras Embedding layer. It's a simple NumPy matrix where entry at index i is the pre-trained vector for the word of index i in our vectorizer's vocabulary.

num_tokens = len(voc) + 2
embedding_dim = 100
hits = 0
misses = 0

# Prepare embedding matrix
embedding_matrix = np.zeros((num_tokens, embedding_dim))
for word, i in word_index.items():
    embedding_vector = embeddings_index.get(word)
    if embedding_vector is not None:
        # Words not found in embedding index will be all-zeros.
        # This includes the representation for "padding" and "OOV"
        embedding_matrix[i] = embedding_vector
        hits += 1
    else:
        misses += 1
print("Converted %d words (%d misses)" % (hits, misses))
Converted 18021 words (1979 misses)

Next, we load the pre-trained word embeddings matrix into an Embedding layer.

Note that we set trainable=False so as to keep the embeddings fixed (we don't want to update them during training).

from keras.layers import Embedding

embedding_layer = Embedding(
    num_tokens,
    embedding_dim,
    trainable=False,
)
embedding_layer.build((1,))
embedding_layer.set_weights([embedding_matrix])

Build the model

A simple 1D convnet with global max pooling and a classifier at the end.

int_sequences_input = keras.Input(shape=(None,), dtype="int32")
embedded_sequences = embedding_layer(int_sequences_input)
x = layers.Conv1D(128, 5, activation="relu")(embedded_sequences)
x = layers.MaxPooling1D(5)(x)
x = layers.Conv1D(128, 5, activation="relu")(x)
x = layers.MaxPooling1D(5)(x)
x = layers.Conv1D(128, 5, activation="relu")(x)
x = layers.GlobalMaxPooling1D()(x)
x = layers.Dense(128, activation="relu")(x)
x = layers.Dropout(0.5)(x)
preds = layers.Dense(len(class_names), activation="softmax")(x)
model = keras.Model(int_sequences_input, preds)
model.summary()
Model: "functional_1"
โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“
โ”ƒ Layer (type)                    โ”ƒ Output Shape              โ”ƒ    Param # โ”ƒ
โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ
โ”‚ input_layer (InputLayer)        โ”‚ (None, None)              โ”‚          0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ embedding (Embedding)           โ”‚ (None, None, 100)         โ”‚  2,000,200 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ conv1d (Conv1D)                 โ”‚ (None, None, 128)         โ”‚     64,128 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ max_pooling1d (MaxPooling1D)    โ”‚ (None, None, 128)         โ”‚          0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ conv1d_1 (Conv1D)               โ”‚ (None, None, 128)         โ”‚     82,048 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ max_pooling1d_1 (MaxPooling1D)  โ”‚ (None, None, 128)         โ”‚          0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ conv1d_2 (Conv1D)               โ”‚ (None, None, 128)         โ”‚     82,048 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ global_max_pooling1d            โ”‚ (None, 128)               โ”‚          0 โ”‚
โ”‚ (GlobalMaxPooling1D)            โ”‚                           โ”‚            โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ dense (Dense)                   โ”‚ (None, 128)               โ”‚     16,512 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ dropout (Dropout)               โ”‚ (None, 128)               โ”‚          0 โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ dense_1 (Dense)                 โ”‚ (None, 20)                โ”‚      2,580 โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
 Total params: 2,247,516 (8.57 MB)
 Trainable params: 2,247,516 (8.57 MB)
 Non-trainable params: 0 (0.00 B)

Train the model

First, convert our list-of-strings data to NumPy arrays of integer indices. The arrays are right-padded.

x_train = vectorizer(np.array([[s] for s in train_samples])).numpy()
x_val = vectorizer(np.array([[s] for s in val_samples])).numpy()

y_train = np.array(train_labels)
y_val = np.array(val_labels)

We use categorical crossentropy as our loss since we're doing softmax classification. Moreover, we use sparse_categorical_crossentropy since our labels are integers.

model.compile(
    loss="sparse_categorical_crossentropy", optimizer="rmsprop", metrics=["acc"]
)
model.fit(x_train, y_train, batch_size=128, epochs=20, validation_data=(x_val, y_val))
Epoch 1/20
   2/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”  9s 78ms/step - acc: 0.0352 - loss: 3.2164 

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1700434131.619687    6780 device_compiler.h:187] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.

 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 22s 123ms/step - acc: 0.0926 - loss: 2.8961 - val_acc: 0.2451 - val_loss: 2.1965
Epoch 2/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 10s 78ms/step - acc: 0.2628 - loss: 2.1377 - val_acc: 0.4421 - val_loss: 1.6594
Epoch 3/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 10s 78ms/step - acc: 0.4504 - loss: 1.5765 - val_acc: 0.5849 - val_loss: 1.2577
Epoch 4/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 10s 76ms/step - acc: 0.5711 - loss: 1.2639 - val_acc: 0.6277 - val_loss: 1.1153
Epoch 5/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 9s 74ms/step - acc: 0.6430 - loss: 1.0318 - val_acc: 0.6684 - val_loss: 0.9902
Epoch 6/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 9s 72ms/step - acc: 0.6990 - loss: 0.8844 - val_acc: 0.6619 - val_loss: 1.0109
Epoch 7/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 9s 70ms/step - acc: 0.7330 - loss: 0.7614 - val_acc: 0.6832 - val_loss: 0.9585
Epoch 8/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 8s 68ms/step - acc: 0.7795 - loss: 0.6328 - val_acc: 0.6847 - val_loss: 0.9917
Epoch 9/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 8s 64ms/step - acc: 0.8203 - loss: 0.5242 - val_acc: 0.7187 - val_loss: 0.9224
Epoch 10/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 8s 60ms/step - acc: 0.8506 - loss: 0.4265 - val_acc: 0.7342 - val_loss: 0.9098
Epoch 11/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 56ms/step - acc: 0.8756 - loss: 0.3659 - val_acc: 0.7204 - val_loss: 1.0022
Epoch 12/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 54ms/step - acc: 0.8921 - loss: 0.3079 - val_acc: 0.7209 - val_loss: 1.0477
Epoch 13/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 54ms/step - acc: 0.9077 - loss: 0.2767 - val_acc: 0.7169 - val_loss: 1.0915
Epoch 14/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 6s 50ms/step - acc: 0.9244 - loss: 0.2253 - val_acc: 0.7382 - val_loss: 1.1397
Epoch 15/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 6s 49ms/step - acc: 0.9301 - loss: 0.2054 - val_acc: 0.7562 - val_loss: 1.0984
Epoch 16/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 5s 42ms/step - acc: 0.9373 - loss: 0.1769 - val_acc: 0.7387 - val_loss: 1.2294
Epoch 17/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 5s 41ms/step - acc: 0.9467 - loss: 0.1626 - val_acc: 0.7009 - val_loss: 1.4906
Epoch 18/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 5s 39ms/step - acc: 0.9471 - loss: 0.1544 - val_acc: 0.7184 - val_loss: 1.6050
Epoch 19/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 5s 37ms/step - acc: 0.9532 - loss: 0.1388 - val_acc: 0.7407 - val_loss: 1.4360
Epoch 20/20
 125/125 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 5s 37ms/step - acc: 0.9519 - loss: 0.1388 - val_acc: 0.7309 - val_loss: 1.5327

<keras.src.callbacks.history.History at 0x7fbf50e6b910>

Export an end-to-end model

Now, we may want to export a Model object that takes as input a string of arbitrary length, rather than a sequence of indices. It would make the model much more portable, since you wouldn't have to worry about the input preprocessing pipeline.

Our vectorizer is actually a Keras layer, so it's simple:

string_input = keras.Input(shape=(1,), dtype="string")
x = vectorizer(string_input)
preds = model(x)
end_to_end_model = keras.Model(string_input, preds)

probabilities = end_to_end_model(
    keras.ops.convert_to_tensor(
        [["this message is about computer graphics and 3D modeling"]]
    )
)

print(class_names[np.argmax(probabilities[0])])
comp.graphics