Author: Fadi Badine
Date created: 14/06/2020
Last modified: 19/07/2023
Description: Classify speakers using Fast Fourier Transform (FFT) and a 1D Convnet.
This example demonstrates how to create a model to classify speakers from the frequency domain representation of speech recordings, obtained via Fast Fourier Transform (FFT).
It shows the following:
tf.data
to load, preprocess and feed audio streams into a modelOur process:
Note:
tf-nightly
.ffmpg
.import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import shutil
import numpy as np
import tensorflow as tf
import keras
from pathlib import Path
from IPython.display import display, Audio
# Get the data from https://www.kaggle.com/kongaevans/speaker-recognition-dataset/
# and save it to ./speaker-recognition-dataset.zip
# then unzip it to ./16000_pcm_speeches
!kaggle datasets download -d kongaevans/speaker-recognition-dataset
!unzip -qq speaker-recognition-dataset.zip
DATASET_ROOT = "16000_pcm_speeches"
# The folders in which we will put the audio samples and the noise samples
AUDIO_SUBFOLDER = "audio"
NOISE_SUBFOLDER = "noise"
DATASET_AUDIO_PATH = os.path.join(DATASET_ROOT, AUDIO_SUBFOLDER)
DATASET_NOISE_PATH = os.path.join(DATASET_ROOT, NOISE_SUBFOLDER)
# Percentage of samples to use for validation
VALID_SPLIT = 0.1
# Seed to use when shuffling the dataset and the noise
SHUFFLE_SEED = 43
# The sampling rate to use.
# This is the one used in all the audio samples.
# We will resample all the noise to this sampling rate.
# This will also be the output size of the audio wave samples
# (since all samples are of 1 second long)
SAMPLING_RATE = 16000
# The factor to multiply the noise with according to:
# noisy_sample = sample + noise * prop * scale
# where prop = sample_amplitude / noise_amplitude
SCALE = 0.5
BATCH_SIZE = 128
EPOCHS = 1
Warning: Your Kaggle API key is readable by other users on this system! To fix this, you can run 'chmod 600 /home/fchollet/.kaggle/kaggle.json'
Downloading speaker-recognition-dataset.zip to /home/fchollet/keras-io/scripts/tmp_5022915
90%|████████████████████████████████████▉ | 208M/231M [00:00<00:00, 217MB/s]
100%|█████████████████████████████████████████| 231M/231M [00:01<00:00, 227MB/s]
The dataset is composed of 7 folders, divided into 2 groups:
Let's sort these 2 categories into 2 folders:
audio
folder which will contain all the per-speaker speech sample foldersnoise
folder which will contain all the noise samplesBefore sorting the audio and noise categories into 2 folders, we have the following directory structure:
main_directory/
...speaker_a/
...speaker_b/
...speaker_c/
...speaker_d/
...speaker_e/
...other/
..._background_noise_/
After sorting, we end up with the following structure:
main_directory/
...audio/
......speaker_a/
......speaker_b/
......speaker_c/
......speaker_d/
......speaker_e/
...noise/
......other/
......_background_noise_/
for folder in os.listdir(DATASET_ROOT):
if os.path.isdir(os.path.join(DATASET_ROOT, folder)):
if folder in [AUDIO_SUBFOLDER, NOISE_SUBFOLDER]:
# If folder is `audio` or `noise`, do nothing
continue
elif folder in ["other", "_background_noise_"]:
# If folder is one of the folders that contains noise samples,
# move it to the `noise` folder
shutil.move(
os.path.join(DATASET_ROOT, folder),
os.path.join(DATASET_NOISE_PATH, folder),
)
else:
# Otherwise, it should be a speaker folder, then move it to
# `audio` folder
shutil.move(
os.path.join(DATASET_ROOT, folder),
os.path.join(DATASET_AUDIO_PATH, folder),
)
In this section:
# Get the list of all noise files
noise_paths = []
for subdir in os.listdir(DATASET_NOISE_PATH):
subdir_path = Path(DATASET_NOISE_PATH) / subdir
if os.path.isdir(subdir_path):
noise_paths += [
os.path.join(subdir_path, filepath)
for filepath in os.listdir(subdir_path)
if filepath.endswith(".wav")
]
if not noise_paths:
raise RuntimeError(f"Could not find any files at {DATASET_NOISE_PATH}")
print(
"Found {} files belonging to {} directories".format(
len(noise_paths), len(os.listdir(DATASET_NOISE_PATH))
)
)
Found 6 files belonging to 2 directories
Resample all noise samples to 16000 Hz
command = (
"for dir in `ls -1 " + DATASET_NOISE_PATH + "`; do "
"for file in `ls -1 " + DATASET_NOISE_PATH + "/$dir/*.wav`; do "
"sample_rate=`ffprobe -hide_banner -loglevel panic -show_streams "
"$file | grep sample_rate | cut -f2 -d=`; "
"if [ $sample_rate -ne 16000 ]; then "
"ffmpeg -hide_banner -loglevel panic -y "
"-i $file -ar 16000 temp.wav; "
"mv temp.wav $file; "
"fi; done; done"
)
os.system(command)
# Split noise into chunks of 16,000 steps each
def load_noise_sample(path):
sample, sampling_rate = tf.audio.decode_wav(
tf.io.read_file(path), desired_channels=1
)
if sampling_rate == SAMPLING_RATE:
# Number of slices of 16000 each that can be generated from the noise sample
slices = int(sample.shape[0] / SAMPLING_RATE)
sample = tf.split(sample[: slices * SAMPLING_RATE], slices)
return sample
else:
print("Sampling rate for {} is incorrect. Ignoring it".format(path))
return None
noises = []
for path in noise_paths:
sample = load_noise_sample(path)
if sample:
noises.extend(sample)
noises = tf.stack(noises)
print(
"{} noise files were split into {} noise samples where each is {} sec. long".format(
len(noise_paths), noises.shape[0], noises.shape[1] // SAMPLING_RATE
)
)
6 noise files were split into 354 noise samples where each is 1 sec. long
def paths_and_labels_to_dataset(audio_paths, labels):
"""Constructs a dataset of audios and labels."""
path_ds = tf.data.Dataset.from_tensor_slices(audio_paths)
audio_ds = path_ds.map(
lambda x: path_to_audio(x), num_parallel_calls=tf.data.AUTOTUNE
)
label_ds = tf.data.Dataset.from_tensor_slices(labels)
return tf.data.Dataset.zip((audio_ds, label_ds))
def path_to_audio(path):
"""Reads and decodes an audio file."""
audio = tf.io.read_file(path)
audio, _ = tf.audio.decode_wav(audio, 1, SAMPLING_RATE)
return audio
def add_noise(audio, noises=None, scale=0.5):
if noises is not None:
# Create a random tensor of the same size as audio ranging from
# 0 to the number of noise stream samples that we have.
tf_rnd = tf.random.uniform(
(tf.shape(audio)[0],), 0, noises.shape[0], dtype=tf.int32
)
noise = tf.gather(noises, tf_rnd, axis=0)
# Get the amplitude proportion between the audio and the noise
prop = tf.math.reduce_max(audio, axis=1) / tf.math.reduce_max(noise, axis=1)
prop = tf.repeat(tf.expand_dims(prop, axis=1), tf.shape(audio)[1], axis=1)
# Adding the rescaled noise to audio
audio = audio + noise * prop * scale
return audio
def audio_to_fft(audio):
# Since tf.signal.fft applies FFT on the innermost dimension,
# we need to squeeze the dimensions and then expand them again
# after FFT
audio = tf.squeeze(audio, axis=-1)
fft = tf.signal.fft(
tf.cast(tf.complex(real=audio, imag=tf.zeros_like(audio)), tf.complex64)
)
fft = tf.expand_dims(fft, axis=-1)
# Return the absolute value of the first half of the FFT
# which represents the positive frequencies
return tf.math.abs(fft[:, : (audio.shape[1] // 2), :])
# Get the list of audio file paths along with their corresponding labels
class_names = os.listdir(DATASET_AUDIO_PATH)
print(
"Our class names: {}".format(
class_names,
)
)
audio_paths = []
labels = []
for label, name in enumerate(class_names):
print(
"Processing speaker {}".format(
name,
)
)
dir_path = Path(DATASET_AUDIO_PATH) / name
speaker_sample_paths = [
os.path.join(dir_path, filepath)
for filepath in os.listdir(dir_path)
if filepath.endswith(".wav")
]
audio_paths += speaker_sample_paths
labels += [label] * len(speaker_sample_paths)
print(
"Found {} files belonging to {} classes.".format(len(audio_paths), len(class_names))
)
# Shuffle
rng = np.random.RandomState(SHUFFLE_SEED)
rng.shuffle(audio_paths)
rng = np.random.RandomState(SHUFFLE_SEED)
rng.shuffle(labels)
# Split into training and validation
num_val_samples = int(VALID_SPLIT * len(audio_paths))
print("Using {} files for training.".format(len(audio_paths) - num_val_samples))
train_audio_paths = audio_paths[:-num_val_samples]
train_labels = labels[:-num_val_samples]
print("Using {} files for validation.".format(num_val_samples))
valid_audio_paths = audio_paths[-num_val_samples:]
valid_labels = labels[-num_val_samples:]
# Create 2 datasets, one for training and the other for validation
train_ds = paths_and_labels_to_dataset(train_audio_paths, train_labels)
train_ds = train_ds.shuffle(buffer_size=BATCH_SIZE * 8, seed=SHUFFLE_SEED).batch(
BATCH_SIZE
)
valid_ds = paths_and_labels_to_dataset(valid_audio_paths, valid_labels)
valid_ds = valid_ds.shuffle(buffer_size=32 * 8, seed=SHUFFLE_SEED).batch(32)
# Add noise to the training set
train_ds = train_ds.map(
lambda x, y: (add_noise(x, noises, scale=SCALE), y),
num_parallel_calls=tf.data.AUTOTUNE,
)
# Transform audio wave to the frequency domain using `audio_to_fft`
train_ds = train_ds.map(
lambda x, y: (audio_to_fft(x), y), num_parallel_calls=tf.data.AUTOTUNE
)
train_ds = train_ds.prefetch(tf.data.AUTOTUNE)
valid_ds = valid_ds.map(
lambda x, y: (audio_to_fft(x), y), num_parallel_calls=tf.data.AUTOTUNE
)
valid_ds = valid_ds.prefetch(tf.data.AUTOTUNE)
Our class names: ['Nelson_Mandela', 'Jens_Stoltenberg', 'Benjamin_Netanyau', 'Julia_Gillard', 'Magaret_Tarcher']
Processing speaker Nelson_Mandela
Processing speaker Jens_Stoltenberg
Processing speaker Benjamin_Netanyau
Processing speaker Julia_Gillard
Processing speaker Magaret_Tarcher
Found 7501 files belonging to 5 classes.
Using 6751 files for training.
Using 750 files for validation.
def residual_block(x, filters, conv_num=3, activation="relu"):
# Shortcut
s = keras.layers.Conv1D(filters, 1, padding="same")(x)
for i in range(conv_num - 1):
x = keras.layers.Conv1D(filters, 3, padding="same")(x)
x = keras.layers.Activation(activation)(x)
x = keras.layers.Conv1D(filters, 3, padding="same")(x)
x = keras.layers.Add()([x, s])
x = keras.layers.Activation(activation)(x)
return keras.layers.MaxPool1D(pool_size=2, strides=2)(x)
def build_model(input_shape, num_classes):
inputs = keras.layers.Input(shape=input_shape, name="input")
x = residual_block(inputs, 16, 2)
x = residual_block(x, 32, 2)
x = residual_block(x, 64, 3)
x = residual_block(x, 128, 3)
x = residual_block(x, 128, 3)
x = keras.layers.AveragePooling1D(pool_size=3, strides=3)(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(256, activation="relu")(x)
x = keras.layers.Dense(128, activation="relu")(x)
outputs = keras.layers.Dense(num_classes, activation="softmax", name="output")(x)
return keras.models.Model(inputs=inputs, outputs=outputs)
model = build_model((SAMPLING_RATE // 2, 1), len(class_names))
model.summary()
# Compile the model using Adam's default learning rate
model.compile(
optimizer="Adam",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
# Add callbacks:
# 'EarlyStopping' to stop training when the model is not enhancing anymore
# 'ModelCheckPoint' to always keep the model that has the best val_accuracy
model_save_filename = "model.keras"
earlystopping_cb = keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True)
mdlcheckpoint_cb = keras.callbacks.ModelCheckpoint(
model_save_filename, monitor="val_accuracy", save_best_only=True
)
Model: "functional_1"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ Connected to ┃ ┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩ │ input (InputLayer) │ (None, 8000, 1) │ 0 │ - │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_1 (Conv1D) │ (None, 8000, 16) │ 64 │ input[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation │ (None, 8000, 16) │ 0 │ conv1d_1[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_2 (Conv1D) │ (None, 8000, 16) │ 784 │ activation[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d (Conv1D) │ (None, 8000, 16) │ 32 │ input[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ add (Add) │ (None, 8000, 16) │ 0 │ conv1d_2[0][0], │ │ │ │ │ conv1d[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_1 │ (None, 8000, 16) │ 0 │ add[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ max_pooling1d │ (None, 4000, 16) │ 0 │ activation_1[0][0] │ │ (MaxPooling1D) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_4 (Conv1D) │ (None, 4000, 32) │ 1,568 │ max_pooling1d[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_2 │ (None, 4000, 32) │ 0 │ conv1d_4[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_5 (Conv1D) │ (None, 4000, 32) │ 3,104 │ activation_2[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_3 (Conv1D) │ (None, 4000, 32) │ 544 │ max_pooling1d[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ add_1 (Add) │ (None, 4000, 32) │ 0 │ conv1d_5[0][0], │ │ │ │ │ conv1d_3[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_3 │ (None, 4000, 32) │ 0 │ add_1[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ max_pooling1d_1 │ (None, 2000, 32) │ 0 │ activation_3[0][0] │ │ (MaxPooling1D) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_7 (Conv1D) │ (None, 2000, 64) │ 6,208 │ max_pooling1d_1[0][… │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_4 │ (None, 2000, 64) │ 0 │ conv1d_7[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_8 (Conv1D) │ (None, 2000, 64) │ 12,352 │ activation_4[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_5 │ (None, 2000, 64) │ 0 │ conv1d_8[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_9 (Conv1D) │ (None, 2000, 64) │ 12,352 │ activation_5[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_6 (Conv1D) │ (None, 2000, 64) │ 2,112 │ max_pooling1d_1[0][… │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ add_2 (Add) │ (None, 2000, 64) │ 0 │ conv1d_9[0][0], │ │ │ │ │ conv1d_6[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_6 │ (None, 2000, 64) │ 0 │ add_2[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ max_pooling1d_2 │ (None, 1000, 64) │ 0 │ activation_6[0][0] │ │ (MaxPooling1D) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_11 (Conv1D) │ (None, 1000, 128) │ 24,704 │ max_pooling1d_2[0][… │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_7 │ (None, 1000, 128) │ 0 │ conv1d_11[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_12 (Conv1D) │ (None, 1000, 128) │ 49,280 │ activation_7[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_8 │ (None, 1000, 128) │ 0 │ conv1d_12[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_13 (Conv1D) │ (None, 1000, 128) │ 49,280 │ activation_8[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_10 (Conv1D) │ (None, 1000, 128) │ 8,320 │ max_pooling1d_2[0][… │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ add_3 (Add) │ (None, 1000, 128) │ 0 │ conv1d_13[0][0], │ │ │ │ │ conv1d_10[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_9 │ (None, 1000, 128) │ 0 │ add_3[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ max_pooling1d_3 │ (None, 500, 128) │ 0 │ activation_9[0][0] │ │ (MaxPooling1D) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_15 (Conv1D) │ (None, 500, 128) │ 49,280 │ max_pooling1d_3[0][… │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_10 │ (None, 500, 128) │ 0 │ conv1d_15[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_16 (Conv1D) │ (None, 500, 128) │ 49,280 │ activation_10[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_11 │ (None, 500, 128) │ 0 │ conv1d_16[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_17 (Conv1D) │ (None, 500, 128) │ 49,280 │ activation_11[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ conv1d_14 (Conv1D) │ (None, 500, 128) │ 16,512 │ max_pooling1d_3[0][… │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ add_4 (Add) │ (None, 500, 128) │ 0 │ conv1d_17[0][0], │ │ │ │ │ conv1d_14[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ activation_12 │ (None, 500, 128) │ 0 │ add_4[0][0] │ │ (Activation) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ max_pooling1d_4 │ (None, 250, 128) │ 0 │ activation_12[0][0] │ │ (MaxPooling1D) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ average_pooling1d │ (None, 83, 128) │ 0 │ max_pooling1d_4[0][… │ │ (AveragePooling1D) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ flatten (Flatten) │ (None, 10624) │ 0 │ average_pooling1d[0… │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ dense (Dense) │ (None, 256) │ 2,720,… │ flatten[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ dense_1 (Dense) │ (None, 128) │ 32,896 │ dense[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ output (Dense) │ (None, 5) │ 645 │ dense_1[0][0] │ └─────────────────────┴───────────────────┴─────────┴──────────────────────┘
Total params: 3,088,597 (11.78 MB)
Trainable params: 3,088,597 (11.78 MB)
Non-trainable params: 0 (0.00 B)
history = model.fit(
train_ds,
epochs=EPOCHS,
validation_data=valid_ds,
callbacks=[earlystopping_cb, mdlcheckpoint_cb],
)
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1699469571.349760 302130 device_compiler.h:186] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.
W0000 00:00:1699469571.377393 302130 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update
52/53 ━━━━━━━━━━━━━━━━━━━[37m━ 0s 396ms/step - accuracy: 0.4496 - loss: 5.2439
W0000 00:00:1699469622.140353 302129 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update
53/53 ━━━━━━━━━━━━━━━━━━━━ 0s 974ms/step - accuracy: 0.4531 - loss: 5.1842
W0000 00:00:1699469625.456199 302130 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update
W0000 00:00:1699469627.405341 302129 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update
53/53 ━━━━━━━━━━━━━━━━━━━━ 101s 1s/step - accuracy: 0.4564 - loss: 5.1267 - val_accuracy: 0.8720 - val_loss: 0.3273
print(model.evaluate(valid_ds))
24/24 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8641 - loss: 0.3521
[0.32171541452407837, 0.871999979019165]
We get ~ 98% validation accuracy.
Let's take some samples and:
SAMPLES_TO_DISPLAY = 10
test_ds = paths_and_labels_to_dataset(valid_audio_paths, valid_labels)
test_ds = test_ds.shuffle(buffer_size=BATCH_SIZE * 8, seed=SHUFFLE_SEED).batch(
BATCH_SIZE
)
test_ds = test_ds.map(
lambda x, y: (add_noise(x, noises, scale=SCALE), y),
num_parallel_calls=tf.data.AUTOTUNE,
)
for audios, labels in test_ds.take(1):
# Get the signal FFT
ffts = audio_to_fft(audios)
# Predict
y_pred = model.predict(ffts)
# Take random samples
rnd = np.random.randint(0, BATCH_SIZE, SAMPLES_TO_DISPLAY)
audios = audios.numpy()[rnd, :, :]
labels = labels.numpy()[rnd]
y_pred = np.argmax(y_pred, axis=-1)[rnd]
for index in range(SAMPLES_TO_DISPLAY):
# For every sample, print the true and predicted label
# as well as run the voice with the noise
print(
"Speaker:\33{} {}\33[0m\tPredicted:\33{} {}\33[0m".format(
"[92m" if labels[index] == y_pred[index] else "[91m",
class_names[labels[index]],
"[92m" if labels[index] == y_pred[index] else "[91m",
class_names[y_pred[index]],
)
)
display(Audio(audios[index, :, :].squeeze(), rate=SAMPLING_RATE))
4/4 ━━━━━━━━━━━━━━━━━━━━ 1s 3ms/step
Speaker:[91m Magaret_Tarcher Predicted:[91m Benjamin_Netanyau
W0000 00:00:1699469629.002282 302130 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update
Speaker:[92m Julia_Gillard Predicted:[92m Julia_Gillard
Speaker:[92m Nelson_Mandela Predicted:[92m Nelson_Mandela
Speaker:[92m Magaret_Tarcher Predicted:[92m Magaret_Tarcher
Speaker:[92m Julia_Gillard Predicted:[92m Julia_Gillard
Speaker:[92m Julia_Gillard Predicted:[92m Julia_Gillard
Speaker:[92m Jens_Stoltenberg Predicted:[92m Jens_Stoltenberg
Speaker:[92m Benjamin_Netanyau Predicted:[92m Benjamin_Netanyau
Speaker:[92m Nelson_Mandela Predicted:[92m Nelson_Mandela
Speaker:[92m Nelson_Mandela Predicted:[92m Nelson_Mandela