UpSampling2D
classkeras.layers.UpSampling2D(
size=(2, 2), data_format=None, interpolation="nearest", **kwargs
)
Upsampling layer for 2D inputs.
The implementation uses interpolative resizing, given the resize method
(specified by the interpolation
argument). Use interpolation=nearest
to repeat the rows and columns of the data.
Example
>>> input_shape = (2, 2, 1, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> print(x)
[[[[ 0 1 2]]
[[ 3 4 5]]]
[[[ 6 7 8]]
[[ 9 10 11]]]]
>>> y = keras.layers.UpSampling2D(size=(1, 2))(x)
>>> print(y)
[[[[ 0 1 2]
[ 0 1 2]]
[[ 3 4 5]
[ 3 4 5]]]
[[[ 6 7 8]
[ 6 7 8]]
[[ 9 10 11]
[ 9 10 11]]]]
Arguments
"channels_last"
(default) or "channels_first"
.
The ordering of the dimensions in the inputs.
"channels_last"
corresponds to inputs with shape
(batch_size, height, width, channels)
while "channels_first"
corresponds to inputs with shape
(batch_size, channels, height, width)
.
When unspecified, uses
image_data_format
value found in your Keras config file at
~/.keras/keras.json
(if exists) else "channels_last"
.
Defaults to "channels_last"
."bicubic"
, "bilinear"
, "lanczos3"
,
"lanczos5"
, "nearest"
.Input shape
4D tensor with shape:
- If data_format
is "channels_last"
:
(batch_size, rows, cols, channels)
- If data_format
is "channels_first"
:
(batch_size, channels, rows, cols)
Output shape
4D tensor with shape:
- If data_format
is "channels_last"
:
(batch_size, upsampled_rows, upsampled_cols, channels)
- If data_format
is "channels_first"
:
(batch_size, channels, upsampled_rows, upsampled_cols)