GRU
classkeras.layers.GRU(
units,
activation="tanh",
recurrent_activation="sigmoid",
use_bias=True,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=0.0,
recurrent_dropout=0.0,
seed=None,
return_sequences=False,
return_state=False,
go_backwards=False,
stateful=False,
unroll=False,
reset_after=True,
use_cudnn="auto",
**kwargs
)
Gated Recurrent Unit - Cho et al. 2014.
Based on available runtime hardware and constraints, this layer will choose different implementations (cuDNN-based or backend-native) to maximize the performance. If a GPU is available and all the arguments to the layer meet the requirement of the cuDNN kernel (see below for details), the layer will use a fast cuDNN implementation when using the TensorFlow backend.
The requirements to use the cuDNN implementation are:
activation
== tanh
recurrent_activation
== sigmoid
dropout
== 0 and recurrent_dropout
== 0unroll
is False
use_bias
is True
reset_after
is True
There are two variants of the GRU implementation. The default one is based on v3 and has reset gate applied to hidden state before matrix multiplication. The other one is based on original and has the order reversed.
The second variant is compatible with CuDNNGRU (GPU-only) and allows
inference on CPU. Thus it has separate biases for kernel
and
recurrent_kernel
. To use this variant, set reset_after=True
and
recurrent_activation='sigmoid'
.
For example:
>>> inputs = np.random.random((32, 10, 8))
>>> gru = keras.layers.GRU(4)
>>> output = gru(inputs)
>>> output.shape
(32, 4)
>>> gru = keras.layers.GRU(4, return_sequences=True, return_state=True)
>>> whole_sequence_output, final_state = gru(inputs)
>>> whole_sequence_output.shape
(32, 10, 4)
>>> final_state.shape
(32, 4)
Arguments
tanh
).
If you pass None
, no activation is applied
(ie. "linear" activation: a(x) = x
).sigmoid
).
If you pass None
, no activation is applied
(ie. "linear" activation: a(x) = x
).True
), whether the layer
should use a bias vector.kernel
weights matrix,
used for the linear transformation of the inputs. Default:
"glorot_uniform"
.recurrent_kernel
weights matrix, used for the linear transformation of the recurrent
state. Default: "orthogonal"
."zeros"
.kernel
weights
matrix. Default: None
.recurrent_kernel
weights matrix. Default: None
.None
.None
.kernel
weights
matrix. Default: None
.recurrent_kernel
weights matrix. Default: None
.None
.False
.False
.False
).
If True
, process the input sequence backwards and return the
reversed sequence.False
). If True
, the last state
for each sample at index i in a batch will be used as initial
state for the sample of index i in the following batch.False
).
If True
, the network will be unrolled,
else a symbolic loop will be used.
Unrolling can speed-up a RNN,
although it tends to be more memory-intensive.
Unrolling is only suitable for short sequences.False
is "before"
,
True
is "after"
(default and cuDNN compatible)."auto"
will
attempt to use cuDNN when feasible, and will fallback to the
default implementation if not.Call arguments
(batch, timesteps, feature)
.(samples, timesteps)
indicating whether
a given timestep should be masked (optional).
An individual True
entry indicates that the corresponding timestep
should be utilized, while a False
entry indicates that the
corresponding timestep should be ignored. Defaults to None
.dropout
or
recurrent_dropout
is used (optional). Defaults to None
.None
causes creation
of zero-filled initial state tensors). Defaults to None
.