Llama3Tokenizer
classkeras_nlp.tokenizers.Llama3Tokenizer(
vocabulary=None,
merges=None,
bos_token="<|begin_of_text|>",
eos_token="<|end_of_text|>",
misc_special_tokens={"<|end_header_id|>", "<|start_header_id|>"},
**kwargs
)
Bype-pair encoding tokenizer layer.
This BPE tokenizer provides the same functionality as the official GPT-2
tokenizer. Given the same vocabulary
which maps tokens to ids, and merges
which describes BPE merge rules, it should provide the same output
as OpenAI implementation (https://github.com/openai/gpt-2/blob/master/src/encoder.py).
Different from OpenAI, this implementation is graph-compatible, so you can
use it within a tf.data
pipeline.
If input is a batch of strings (rank > 0):
By default, the layer will output a tf.RaggedTensor
where the last
dimension of the output is ragged. If sequence_length
is set, the layer
will output a dense tf.Tensor
where all inputs have been padded or
truncated to sequence_length
.
If input is a scalar string (rank == 0):
By default, the layer will output a dense tf.Tensor
with static shape
[None]
. If sequence_length
is set, the output will be
a dense tf.Tensor
of shape [sequence_length]
.
Arguments
sequence_length
. Defaults to None
.False
.vocabulary
. Defaults to None
.Examples
Tokenize
>>> vocab = {"butter": 1, "fly": 2}
>>> merge = ["b u", "t t", "e r", "bu tt", "butt er", "f l", "fl y"]
>>> tokenizer = keras_hub.tokenizers.BytePairTokenizer(vocab, merge)
>>> outputs = tokenizer("butterfly")
>>> np.array(outputs)
array([1, 2], dtype=int32)
>>> seq1, seq2 = tokenizer(["butterfly", "butter"])
>>> np.array(seq1)
array([1, 2])
>>> np.array(seq2)
array([1])
>>> tokenizer = keras_hub.tokenizers.BytePairTokenizer(
... vocab, merge, sequence_length=2)
>>> seq1, seq2 = tokenizer(["butterfly", "butter"])
>>> np.array(seq1)
array([1, 2], dtype=int32)
>>> np.array(seq2)
array([1, 0], dtype=int32)
Detokenize
>>> vocab = {"butter": 1, "fly": 2}
>>> merge = ["b u", "t t", "e r", "bu tt", "butt er", "f l", "fl y"]
>>> tokenizer = keras_hub.tokenizers.BytePairTokenizer(vocab, merge)
>>> tokenizer.detokenize([[1, 2]])
['butterfly']
from_preset
methodLlama3Tokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
Instantiate a keras_hub.models.Tokenizer
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Tokenizer
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_hub.models.Tokenizer.from_preset()
, or from
a model class like keras_hub.models.GemmaTokenizer.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, the weights will be loaded into the
model architecture. If False
, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
Preset name | Parameters | Description |
---|---|---|
llama3_8b_en | 8.03B | 8 billion parameter, 32-layer, base LLaMA 3 model. |
llama3_8b_en_int8 | 8.03B | 8 billion parameter, 32-layer, base LLaMA 3 model with activation and weights quantized to int8. |
llama3_instruct_8b_en | 8.03B | 8 billion parameter, 32-layer, instruction tuned LLaMA 3 model. |
llama3_instruct_8b_en_int8 | 8.03B | 8 billion parameter, 32-layer, instruction tuned LLaMA 3 model with activation and weights quantized to int8. |