About Keras
Getting started
Developer guides
Keras 3 API documentation
Models API
Layers API
Callbacks API
Ops API
Optimizers
Metrics
Losses
Data loading
Built-in small datasets
Keras Applications
Mixed precision
Multi-device distribution
RNG API
Utilities
KerasTuner
KerasCV
Layers
Models
Bounding box formats and utilities
Losses
KerasNLP
KerasHub
Keras 2 API documentation
Code examples
KerasTuner: Hyperparameter Tuning
KerasHub: Pretrained Models
KerasCV: Computer Vision Workflows
KerasNLP: Natural Language Workflows
search
►
Keras 3 API documentation
/
KerasCV
/
Layers
/ KerasCV Regularization Layers
KerasCV Regularization Layers
KerasCV regularization layers implement computer vision specific model regularization techniques.
DropBlock2D layer
DropPath layer
SqueezeAndExcite2D layer
SqueezeAndExcite2D layer
StochasticDepth layer